Chemistry Topic 8

Chemical Analysis	
Describe how to carry out a	Nichrome/platinum loop/wire dip in sample/place in roaring
flame test.	flame/ observe colour of the flame.
What is the main problem	If a sample containing a mixture of ions is used some flame
with flame tests?	colours can be masked.
What solution is used for the	Sodium hydroxide solution can be used to identify some metal
precipitate test?	ions (cations).
Sulfate test (SO ₄ ²⁻)	Sulfate ions in solution produce a white precipitate with barium
	chloride solution in the presence of dilute hydrochloric acid.
	Carbonates react with dilute acids to form carbon dioxide gas.
Carbonate test (CO ₃ ²⁻)	Carbon dioxide can be identified with limewater.
	Halide ions in solution produce precipitates with silver nitrate
Halide test (Cl ⁻ , Br ⁻ , l ⁻)	solution in the presence of dilute nitric acid. Silver chloride is
	white, silver bromide is cream and silver iodide is yellow.

Flame Tests (Cations)				
Metal	lon	Flame Colour		
Lithium	Li ⁺	Crimson		
Sodium	Na⁺	Yellow		
Potassium	K ⁺	Orange		
Calcium	Ca ²⁺	Red		
Copper	Cu ²⁺	Green		

Precipitate Tests (Cations)				
Metal	Ion	Precipitate Colour		
Magnesium	Mg ²⁺	White – (negative flame test)		
Calcium	Ca ²⁺	White – (red flame test)		
Aluminium	Al ³⁺	White (dissolves in excess NaOH)		
Copper	Cu ²⁺	Blue		
Iron (II)	Fe ²⁺	Green		
Iron (III)	Fe ³⁺	Brown		

Insoluble Precipitates:

copper sulfate + sodium hydroxide → sodium sulfate + copper hydroxide

CuSO₄(aq)

2NaOH(aq)

 \rightarrow Na₂SO₄(aq) + Cu(OH)₂(s)

Required Practical

Gas Tests	
Oxygen	Glowing splint inserted into a test tube of the gas. The splint relights in oxygen.
Hydrogen	A burning splint held at the open end of a test tube of the gas. Burns rapidly with a pop sound.
Carbon Dioxide	Aqueous solution of calcium hydroxide (lime water). When carbon dioxide is shaken with or bubbled through limewater the limewater turns milky (cloudy).
Chlorine	When damp litmus paper is put into chlorine gas the litmus paper is bleached and turns white.

Method

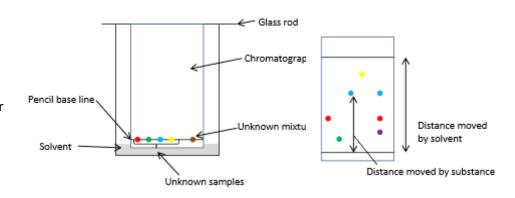
Draw a pencil line 2cm from the bottom Mark 5 spots in pencil equal distance along the line Use a capillary tube, put a spot of each sample on the pencil dots

Add water to the beaker 1cm depth Tape the paper to a glass rod, rest it on top of the beaker – do not allow the samples to go in the water Allow the solvent to travel up the paper Use a pencil to show the distance the water travels Measure the distance the water has travelled Measure the distance each sample has travelled Calculate Rf

Pure Substances and formulations		
Pure Substances	In chemistry, a pure substance is a single element or compound, not mixed with any other substance. Pure elements and compounds melt and boil at specific temperatures. Impure substances melt over a range.	
Everyday pure substance	In everyday language, a pure substance can mean a substance that has had nothing added to it, so it is unadulterated and in its natural state, e.g. pure milk.	
How to determine if a substance is pure	Pure elements and compounds melt and boil at specific temperatures. Impure substances melt over a range.	
Advantages of Instrumental methods of chemical tests.	Accurate, sensitive, rapid	
Flame Emission Spectroscopy	The sample is put into a flame and the light given out is passed through a spectroscope. The output is a line spectrum that can be analysed to identify the metal ions in the solution and measure their concentrations.	

Chromatography: a separating technique.

Stationary phase (paper) and a mobile phase (solvent). Separation depends on solubility and attraction to the paper(stationary phase).


The ratio of the distance moved by a compound (centre of spot from origin) to the distance moved by the solvent can be expressed as its Rf value:

Rf = distance moved by substance

distance moved by solvent

Different compounds have different Rf values in different solvents, which can be used to help identify the compounds.

The compounds in a mixture may separate into different spots depending on the solvent but a pure compound will produce a single spot in all solvents.

