| Physics 3: Particle Model of Matter |                                                                                                                                                                                                                |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Section 1: Key Terms                |                                                                                                                                                                                                                |  |
| 1 Density                           | How much <b>mass</b> a substance contains <b>compared to its volume</b> . Solids are usually dense because the particles are closely packed.                                                                   |  |
| 2 State of matter                   | The way in which the <b>particles are arranged</b> – solid, liquid or gas.                                                                                                                                     |  |
| 3 Change of state                   | When a substance <b>changes from one state of matter</b> to another (e.g. melting is the change from a solid to a liquid). Energy changes the state, not the temperature.                                      |  |
| 4 Physical change                   | A change that can be <b>reversed</b> to recover the original material. <b>E.g. a change of state.</b>                                                                                                          |  |
| 5 Chemical change                   | A change that creates new products. It cannot be revered. E.g. a chemical reaction.                                                                                                                            |  |
| 6 Internal energy                   | The <b>energy stored</b> inside a system <b>by the particles</b> (atoms and molecules) that make up the system. Internal energy is the <b>total kinetic energy and potential energy of all the particles</b> . |  |
| 7 Kinetic energy                    | Energy stored within moving objects (e.g. particles).                                                                                                                                                          |  |
| 8 Potential energy                  | Energy stored in particles because of their position. The further apart particles are, the greater the potential energy.                                                                                       |  |
| 9 Specific heat capacity            | The specific heat capacity of a substance is the <b>amount of energy</b> required to <b>raise the temperature of one kilogram</b> of the substance <b>by one degree Celsius</b> .                              |  |
| 10 Temperature                      | The <b>average kinetic energy</b> of the <b>particles</b> .                                                                                                                                                    |  |
| 11 Specific latent heat             | The <b>amount of energy</b> required to <b>change the state of one kilogram</b> of the substance with <b>no change in temperature</b> .                                                                        |  |
| 12 Latent heat of fusion            | Energy required to change state from solid to liquid.                                                                                                                                                          |  |
| 13 Latent heat of vaporisation      | Energy required to change state from liquid to vapour.                                                                                                                                                         |  |
| 14 Gas Pressure                     | The <b>force</b> exerted by gases on surface as the <b>particles collide</b> with it. <b>As temperature increases</b> , <b>gas pressure increases</b> if the volume stays constant.                            |  |



| Section 3: Explaining a heating curve |                | ining a heating curve                                                                                                                                                                                 |
|---------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | 25 Solid       | Particles are closely packed, fixed and arranged in regular layers. As more energy is absorbed the kinetic energy and therefore the internal energy of the material increases.                        |
|                                       | 26 Melting     | Temperature doesn't change. Energy is used to weaken the forces<br>between particles. As more energy is absorbed the potential energy and<br>therefore the internal energy of the material increases. |
|                                       | 27 Liquid      | Particles are touching but no longer arranged regularly. They are above to move. As more energy is absorbed the kinetic energy and therefore the internal energy of the material increases.           |
| <sup>3</sup> )                        | 28 Evaporation | Temperature doesn't change. Energy is used to weaken the forces<br>between particles. As more energy is absorbed the potential energy and<br>therefore the internal energy of the material increases. |
| ,                                     | 29 Gas         | Particles move randomly. As more energy is absorbed the particles move more quickly and the temperature increases.                                                                                    |

22 Sublimation



#### **30)** Finding the Density of a Regular Solid Object

- Find the mass using a balance.
- Find the volume using the formula: Volume = length x width x height
- Use the formula p = m/v

# **31)** Finding the Density of an Irregular Solid Object

- Find the mass using a balance.
- Find the volume using the formula, large measuring cylinder or a Eureka can.
- If using a Eureka can fill the can up to the spout with water.
- Place a measuring underneath the spout.
- Submerge the object beneath the waters surface, in the can.
- Catch the water that is displaced and drips out of the spout in the measuring cylinder.
- Measure the volume.
- Use the formula p = m/v



## 32) Finding the Density of a Liquid

- Find the mass of the liquid by placing an empty measuring cylinder on a balance and zeroing the mass
- Then add the liquid to the measuring cylinder to find the mass of the liquid alone.
- Find the volume by reading off the measuring cylinder.
- Use the formula p = m/v

# **33)** Specific Heat Capacity (recap P1)

- Amount of energy required to raise 1kg of a material by 1°C.
- Energy = mass x Specific x change in temp Heat Capacity

Units of S.H. C are J/k °C

## 34) Specific Latent Heat

- The amount of energy needed to change the state of 1Kg of material from one state to another without changing the temperature.
- Energy = mass x specific latent heat
- E = m x L

Units S.L.H are J/kg

## 35) Internal Energy

- Particles are always moving. The distance between them can change.
- The higher the temperature the faster they move and the bigger the distances between them.
- The particles have:
- kinetic energy how much they are moving
- potential energy how far apart from each other the particles are.
- Gases have the most potential energy as their particles are furthest apart.
- The **internal energy** of a system is the total kinetic and potential energy of all the particles in the system.

### 36) Particle Motion In a Gas

Gas particles are moving **randomly** and **freely**. They have high kinetic energy. The higher the temperature the more kinetic energy they move faster.

Gas particles **collide** with each other and the walls of the container creating a **force** at **right angles** to the container.

pressure = (Pa) or (N/ m<sup>2</sup>)

) force (N) area (m<sup>2</sup>)

The total force exerted by all the particles is called **gas pressure.** 

If the gas **temperature increases** at a constant volume, the pressure will increase as the particles will have more kinetic energy and so **collide** more **frequently** and with more **force**.



