Physics 3: Particle Model of Matter

Section 1: Key Terms	How much mass a substance contains compared to its volume. Solids are usually dense because the particles are closely packed.		
1 Density	The way in which the particles are arranged - solid, liquid or gas.		
2 State of matter	When a substance changes from one state of matter to another (e.g. melting is the change from a solid to a liquid). Energy changes the state, not the temperature.		
3 Change of state	A change that can be reversed to recover the original material. E.g. a change of state.		
4 Physical change	A change that creates new products. It cannot be revered. E.g. a chemical reaction.		
6 Chemical change	The energy stored inside a system by the particles (atoms and molecules) that make up the system. Internal energy is the total kinetic energy and potential energy of all the particles.		
7 Kinetic energy	Energy stored within moving objects (e.g. particles).		
8 Potential energy	Energy stored in particles because of their position. The further apart particles are, the greater the potential energy.		
9 Specific heat capacity	The specific heat capacity of a substance is the amount of energy required to raise the temperature of one kilogram of the substance by one degree Celsius.		
10 Temperature	The average kinetic energy of the particles.		
11 Specific latent heat	lhe amount of energy required to change the state of one kilogram of the substance with no change in temperature.		
12 Latent heat of fusion	Energy required to change state from solid to liquid.		
13 Latent heat of	Energy required to change state from liquid to vapour.		
vaporisation	14 Gas Pressure		The force exerted by gases on surface as the particles collide with it. As temperature
:---			
increases, gas pressure increases if the volume stays constant.			

Section 2: Equations to learn

Calculation Equation

Equation
Symbol equation Units

	Symbol equation	Units
mass	$\rho=\frac{m}{v}$	Density $=$ kilograms $/$ metre $^{3}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$ Mass $=$ kilograms (kg) Volume $=\operatorname{metres}^{3}\left(\mathrm{~m}^{3}\right)$

30) Finding the Density of a Regular Solid Object

- Find the mass using a balance.
- Find the volume using the formula: Volume $=$ length x width x height
- Use the formula $p=m / v$

31) Finding the Density of an Irregular Solid Object

- Find the mass using a balance.
- Find the volume using the formula, large measuring cylinder or a Eureka can.
- If using a Eureka can fill the can up to the spout with water.
- Place a measuring underneath the spout.
- Submerge the object beneath the waters surface, in the can.
- Catch the water that is displaced and drips out of the spout in the measuring cylinder.
- Measure the volume.
- Use the formula $p=m / v$

32) Finding the Density of a Liquid

- Find the mass of the liquid by placing an empty measuring cylinder on a balance and zeroing the mass
- Then add the liquid to the measuring cylinder to find the mass of the liquid alone.
- Find the volume by reading off the measuring cylinder.
- Use the formula $p=m / v$

33) Specific Heat Capacity (recap P1)

- Amount of energy required to raise 1 kg of a material by $1^{\circ} \mathrm{C}$.
- Energy $=$ mass x Specific x change in temp Heat Capacity

Units of S.H. C are $\mathrm{J} / \mathrm{k}^{\circ} \mathrm{C}$

34) Specific Latent Heat

- The amount of energy needed to change the state of 1 Kg of material from one state to another without changing the temperature.
- Energy $=$ mass x specific latent heat
- $E=m \times L$

Units S.L.H are J/kg

35) Internal Energy

- Particles are always moving. The distance between them can change.
- The higher the temperature the faster they move and the bigger the distances between them.
- The particles have:
$>$ kinetic energy - how much they are moving
$>$ potential energy - how far apart from each other the particles are.
- Gases have the most potential energy as their particles are furthest apart.
- The internal energy of a system is the total kinetic and potential energy of all the particles in the system.

36) Particle Motion In a Gas

Gas particles are moving randomly and freely. They have high kinetic energy. The higher the temperature the more kinetic energy they move faster.

Gas particles collide with each other and the walls of the container creating a force at right angles to the container.

$$
\begin{array}{ll}
\text { pressure }= & \text { force }(\mathrm{N}) \\
(\mathrm{Pa}) \text { or }\left(\mathrm{N} / \mathrm{m}^{2}\right) & \text { area }\left(\mathrm{m}^{2}\right)
\end{array}
$$

The total force exerted by all the particles is called gas pressure.
If the gas temperature increases at a constant volume, the pressure will increase as the particles will have more kinetic energy and so collide more frequently and with more force.

Physics Only
 Section : -Doing Work on a Gas

Work Done = Force \times Distance

If you apply a force to a gas in a container and move the gas (compress or expand the volume), then work is done and energy is transferred either into or out of the gas.

Gas pressure increase \rightarrow transfer energy into kinetic energy store of gas.
\rightarrow temperature of gas increases.
Gas pressure decreases \rightarrow transfer energy out of kinetic energy store of gas. \rightarrow temperature of gas decrease.

Low Pressure
Higher pressure

