Physics 5: Forces							sticity			
Section 1: Key terms					18 Elastic deformation		Occurs when a spring is stretched and can then return to its			
A value with magnitude			tude (size) only, e.g. speed, distance.		10 Inclustic date	una a ti a sa	Occurs when a spring is stretched and its length is			
2 Vector A value with magnitu		A value with magnitu	ude (size) and direction, e.g. all forces, displacement, velocity.				ormation	permanently altered.		
3 Contact force Fr		Force between objects	Force between objects that are touching e.g. friction, air resistance.				The length a spring can be stretched before it no l e			
1 Non-contact force		Force between separate objects e.g. gravitational force, magnetic force.						proportionality a force-extension graph is curved		
5 Wei	ght	The force of gravity a	acting on an obj e	ect's mass. Measured using a newtonmeter.						
6 Cen	tre of mass	The single point at w	hich the object's	weight appears to act.						
7 Resultant force		A resultant force is a single force that has the same effect as all the forces acting on an object.								
3 Work done		Nork is done when an object is moved through a distance . When work is done against iriction there is a temperature rise .		:	vtons)	/	Limit of proportionality			
9 Momentum (HT) Movi		Moving objects with ma	oving objects with mass have momentum. Momentum is "mass in motion".					21 Force-extension graph		
10 Conservation of In a closed momentum (HT)		In a closed system, the momentum after the	closed system, the total momentum before an event is equal to the total nentum after the event.			Force		Extension in		
Section	on 2: Equation Equation	s to learn	Symbol equation	Units	,			proportional to force		
11	Weight = mass strength	x gravitational field	W = m g	Weight – newtons (N) Mass – kilograms (kg) GFS – newtons per kilogram (N/kg)		Exter		ension (metres)		
12	Work done = force x distance		N = F s Work done – joules (J) Force – newtons (N)		Section 4: Forces and Braking					
13	Force = spring constant x extension		F = k e	Force – newtons (N) Spring constant – newtons per metre (N/m)		21 Stopping distance	travels distance i	Travels during the driver's reaction time (thinking distance) and the distance it travels under the braking force (braking distance).		
14	Distance = speed x time		Extension – metres (m) s = v t Distance – metres (m)		22 Thinking distance	The dista	ance a vehicle travels while a driver is reacting.			
				Speed – metres per second (m/s) Time – seconds (s)		23 Reaction time	The time	ti takes for a driver to react, typically 0.2-0.9s. Affected by		
5 Acceleration = <u>change in velocity</u> time taken		a = <u>Av</u> t	Acceleration = metres per second squared (m/s ²) Velocity = metres per second (m/s) Time = seconds (s)		24 Braking distance	The dista	ance a vehicle travels under braking. Affected by weather ns (e.g. rain or ice) and the conditions of the brakes and tyres			
26 Resultant force = mass x acceleration		F = m a	m a Force – newtons (N) Mass – kilograms (kg) Acceleration = metres per second squared (m/s ²)			When the the brak	brakes are pressed, work done by the friction force betweer as and the wheel reduces the kinetic energy of the vehicle			
L7 Momentum = mass x velocity (HT)		M = m v Momentum – kilograms metres per second (kg m/s) Mass – kilograms (kg) Velocity = metres per second (m/s)		25 Braking force	e and the temperature of the brakes increases . The greater the of a vehicle, the greater the force needed to stop the vehicle. Large declarations may lead to loss of control or overheating of the br					

Section 5a: Motio	n		Continue Cu	Noute				
25 Displacement The distance an object moves and the direction in which it occurs. A vect quantity.		es and the direction in which it occurs. A vector	Section 6	newto	on's Laws			
					The velocit	city of an object will only change if a resultant force is acting on		ng on
26 Velocity The speed of an object		n a particular direction.		s First	the object.			
27 Acceleration	The change of an object's spe near the surface of the Earl	ect's speed in a certain amount of time. If an object is falling the Earth its acceleration will be 9.8m/s² .		Law		If there is no resultant force the object will: - Remain stationary if it was not moving.		
28 Terminal The maximum speed of a m		noving object. Occurs when the force moving an			 Continue at a constant speed if it was already moving. 			
velocity object (e.g. gravity) is balan		ced by frictional forces (e.g. air resistance).			The acceleration of an object is proportional to the resultant force acting on the			a 10 de a
29 Circular motion (HT) An object moving in a circle is because the direction in wh velocity is a vector quantity t		has constant speed but changing velocity . This nich the object is moving is constantly changing, and nat measures direction and speed.	37 Newton's Second Law		object, and inversely proportional to the mass of the object, i.e. Force = mass x acceleration.			
30 Distance-time	graph	31 Velocity-time graph	38 Newton's	s Third	Whenever t	wo objects interact, the fo	rces they exert on each other a	re
Constant speed - st	raight line	Constant speed - horizontal line	Law		equal and opposite.			
A 1 1'			39 Inertia (HT)		The tendency of objects to continue in their state of rest or of uniform			orm
Accelerating - curve	ed line upwards	Accelerating - straight line with velocity increasing		,	motion.			
Decelerating - curve horizontal	ed line going towards	Decelerating - straight line with velocity decreasing	Section 7: i		tifying force	es		
Stationary - horizon	tal line	Stationary - horizontal line on x-axis (velocity = 0)	None	40. Grav	vitational	Gravity		
		Moving backwards - below x-axis	contact	contact		211	11	
Gradient of line can	be calculated to give speed	Gradient of line can be calculated to give acceleration or deceleration					E	
14	Stationary	velocity (m/min)				111	11	
12 10 Consta w 8 00 6 6	ant speed Decelerating	80 Constant speed 60 Accelerating 20 Accelerating		41. Elect	trostatic		<i>·····</i> →	
	Accelerating	- 20 Accelerating (min) - 40 10 20 30 40 50				attraction	repulsion	
32 Distance-time graph		33 Velocity-time graph		42. m	nagnetic	I	II	
Section <u>5b: Typic</u>	al Values of Speed					•		
32 Walking		1.5 m/s						
33 Running		3 m/s						
34 Cycling		6 m/s				Attraction	Repulsion	
35 Sound in air		330 m/s				Account	(cp aloren	

Section 10	: Pressure	Section 11: Momentum				
52. Effect of depth on water	Pressure increases with depth Highest pressure Water pressure is the result of the weight of all the water above	54. What is Momentum	 Momentum is how much an object want to keep moving. Objects with more momentum are harder to stop. The more mass and object has, the more momentum it has. The greater the objects velocity, the more momentum it has. Momentum is a vector quantity, it has both magnitude and direction. Momentum = Mass x Velocity M = m x v Units of momentum are kgm/s Units of mass are kg Units of velocity are m/s 			
53. Pressure formula	pushing down on the water below. As you go deeper into a body of water, there is more water above, and therefore a greater weight pushing down. $Pressure = \frac{Force}{Area} \qquad P = \frac{F}{A} \qquad P$ Units of pressure are Pascals (Pa) Units of force are Newtons (N) Units of area are m ²	55.Conservation of momentum56. Changing momentum	In a closed system the overall momentum will remain the same before and after a collision or explosion. If the objects was stationary initially then the momentum is zero. External forces can cause a change in momentum. Force = change in momentum(mass x change in velocity) - Time			
	Pressure = height of the column x gravity x density of the liquid P = h x g x p Units of height are m Units of gravity areN/kg Units of density are kg/m ³	57. Safety in Collisions	If an objects momentum is changed in a very short time, there will be a large force exhorted. A larger force will cause more damage and injury. By increasing the time over which the collision occurs, causing a fixed change in momentum, we can reduce the force, making the collision safer. Car Safety Features: - Crumple zones - Air bags - Seat belts			

Section 12: I	nvestigating how Force and Mass Affect Acceleration	Section 13: Terminal velocity			
58. Method	 Fit a double segment black card on to the trolley. Clamp the light gate at a height which allows both segments of the card to interrupt the light beam when the trolley passes through the gate. Measure the width of each segment with a ruler, and enter the values into the software. Pass a piece of string with a mass hanging on one end over a pulley. Attach the other end to the trolley so that, when the mass is released, it causes the trolley to accelerate. Fix a 1 kg mass on the trolley. Select the first mass on the hanger to be 100g (1N). Pull the trolley back so that the mass is raised to just below the pulley. Position the light gate so that it will detect the motion of the trolley soon after it has started moving. Set the software to record data, then release the trolley. Observe the measurement for the acceleration of the trolley. Repeat this measurement from the same starting position for the trolley several times. Increase it to 200 g (2N). Release the trolley from the same starting point as before. Repeat the above procedure for slotted masses of 300g (3N) , 400g (4N) and 500g (5N). The data logger will calculate the acceleration of the trolley as the force applied to the trolley increases. Record the results in a table. 	59. Definition	The point at which an object falls at a constant speed due to the forces of weight and air resistance being balanced.		
		60. Forces 61. Velocity time graph	 1)At the start of his jump the air resistance is zero and the forces are unbalanced so he accelerates downwards, due to the resultant force. 2) As his speed increases his air resistance will increase, reducing the resultant force and rate of acceleration. 3) Eventually the air resistance will be big enough to equal the skydiver's weight. At this point the forces are balanced so his speed becomes constant - this is called TERMINAL VELOCITY 4) When he opens his parachute the air resistance suddenly increase, causing a resultant force upwards, causing him to decelerate. 5) Because he is slowing down his air resistance will decrease again until it balances his weight. The skydiver has now reached a new, lower terminal velocity. 		
			velocity First terminal velocity Parachute open Ground reached Initial acceleration Second terminal velocity		