Q1. (a) Figure 1 shows the distance-time graph for a person walking to a bus stop.
Figure 1

(i) Which one of the following statements describes the motion of the person between points \mathbf{R} and \mathbf{S} on the graph?

Tick $(\sqrt{ })$ one box.
Not moving

Moving at constant speed

Moving with increasing speed

(ii) Another person, walking at constant speed, travels the same distance to the bus stop in 200 seconds.

Complete Figure $\mathbf{2}$ to show a distance-time graph for this person.
Figure 2

(b) A bus accelerates away from the bus stop at $2.5 \mathrm{~m} / \mathrm{s}^{2}$.

The total mass of the bus and passengers is 14000 kg .

Calculate the resultant force needed to accelerate the bus and passengers.
\qquad
\qquad
\qquad
Resultant force $=$ \qquad N

Q2. Levers and hydraulic systems can act as force multipliers.
(a) Figure 1 shows a girl trying to lift a large rock using a long rod as a lever.

Figure 1

The girl is pushing down on the rod but is just unable to lift the rock.
Which of the following changes would allow her to lift the rock?
Tick (\checkmark) two boxes.

Change	Tick (\checkmark)
Move the pivot away from the rock	
Make the rod longer	
Push the rod upwards	
Push down on the rod with a greater force	

(b) Liquids are used in hydraulic systems because they are virtually incompressible. Explain how the spacing of particles in a liquid cause it to be virtually incompressible.
\qquad
\qquad
\qquad
\qquad
(c) Figure 2 shows a man using a car jack to lift his car.

Figure 2

Figure 3 shows a simple diagram of a car jack.
Figure 3

(i) The man pushes down with an effort force. This results in a much larger force acting upwards on the car. Use information from Figure 3 to explain how.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Which of the following statements about the forces in Figure $\mathbf{3}$ is correct?

Tick (\checkmark) one box.

	Tick (\checkmark)
The force acting on the car moves a greater distance than the effort force.	
The force acting on the car moves less distance than the effort force.	
The force acting on the car moves the same distance as the effort force.	

Q3. A paintball gun is used to fire a small ball of paint, called a paintball, at a target.
The figure below shows someone just about to fire a paintball gun. The paintball is inside the gun.

(a) What is the momentum of the paintball before the gun is fired?
\qquad
Give a reason for your answer.
\qquad
\qquad
(b) The gun fires the paintball forwards at a velocity of $90 \mathrm{~m} / \mathrm{s}$.

The paintball has a mass of 0.0030 kg .
Calculate the momentum of the paintball just after the gun is fired.
\qquad
\qquad
\qquad
Momentum = \qquad $\mathrm{kg} \mathrm{m} / \mathrm{s}$
(c) The momentum of the gun and paintball is conserved. Use the correct answer from the box to complete the sentence.

equal to	greater than	less than

The total momentum of the gun and paintball just after the gun is fired will be \qquad the total momentum of the gun and paintball before the gun is fired.

Q4. When two objects interact, they exert forces on each other.
(a) Which statement about the forces is correct? Tick (\checkmark) one box.

	Tick (\checkmark)
The forces are equal in size and act in the same direction.	
The forces are unequal in size and act in the same direction.	
The forces are equal in size and act in opposite directions.	
The forces are unequal in size and act in opposite directions.	

(b) A fisherman pulls a boat towards land. The forces acting on the boat are shown in Diagram 1. The fisherman exerts a force of 300 N on the boat.
The sea exerts a resistive force of 250 N on the boat.

Diagram 1

(i) Describe the motion of the boat.
\qquad
\qquad
\qquad
\qquad
(ii) When the boat reaches land, the resistive force increases to 300 N . The fisherman continues to exert a force of 300 N .

Describe the motion of the boat.
Tick $(\sqrt{ })$ one box.

Accelerating to the right \square

Constant velocity to the right

Stationary

(iii) Explain your answer to part (b)(ii).
\qquad
\qquad
\qquad
\qquad
(iv) Another fisherman comes to help pull the boat. Each fisherman pulls with a force of 300 N, as shown in Diagram 2.

Diagram 2 is drawn to scale. Add to Diagram 2 to show the single force that has the same effect as the two 300 N forces. Determine the value of this resultant force.

Diagram 2

Resultant force $=$ \qquad N

Q5. Some students fill an empty plastic bottle with water. The weight of the water in the bottle is 24 N and the cross-sectional area of the bottom of the bottle is $0.008 \mathrm{~m}^{2}$.
(a) Calculate the pressure of the water on the bottom of the bottle and give the unit.
\qquad
(b) The students made four holes in the bottle along a vertical line.

They put the bottle in a sink. They used water from a tap to keep the bottle filled to the top.

The students measured and recorded the vertical heights of the holes above the sink. They also measured the horizontal distances the water landed away from the bottle. A pair of measurements for one of the holes is shown in the diagram.

The complete data from the experiment is shown in the table.

Hole	Vertical height in $\mathbf{~ c m}$	Horizontal distance in $\mathbf{~ c m}$
J	24	15
K	18	20
L	12	30
M	6	40

(i) Which hole is shown in the diagram? Draw a ring around the correct answer.
J
K
L
(ii) On the diagram, draw the path of the water coming out of hole \mathbf{M}.

Use the information in the table to help you.
(c) Suggest one problem that might arise from trying to collect data from a fifth hole with a vertical height of 1 cm above the sink.
\qquad
\qquad

Q6. The diagram shows a sky-diver in free fall. Two forces, \mathbf{X} and \mathbf{Y}, act on the sky-diver.

(a) Complete these sentences by crossing out the two lines in each box that are wrong.

(i) Force \mathbf{X} is caused by | $\begin{array}{l}\text { friction } \\ \text { gravity } \\ \text { weight }\end{array}$ |
| :--- |.

(ii) Force \mathbf{Y} is caused by
(b) The size of force \mathbf{X} changes as the sky-diver falls. Describe the motion of the sky-diver when:
(i) force \mathbf{X} is smaller than force \mathbf{Y},
\qquad
\qquad
(ii) force \mathbf{X} is equal to force \mathbf{Y}.
\qquad
\qquad

Q7. The picture shows players in a cricket match.

(a) A fast bowler bowls the ball at $35 \mathrm{~m} / \mathrm{s}$. The ball has a mass of 0.16 kg .

Use the equation in the box to calculate the kinetic energy of the cricket ball as it leaves the bowler's hand.

$$
\text { kinetic energy }=\frac{1}{2} \times \text { mass } \times \text { speed }^{2}
$$

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
Kinetic energy = \qquad J
(b) When the ball reaches the batsman it is travelling at $30 \mathrm{~m} / \mathrm{s}$. The batsman strikes the ball which moves off at $30 \mathrm{~m} / \mathrm{s}$ in the opposite direction.

(i) Use the equation in the box to calculate the change in momentum of the ball.

```
momentum = mass }\times\mathrm{ velocity
```

Show clearly how you work out your answer.
\qquad
\qquad
Change in momentum $=$ \qquad $\mathrm{kg} \mathrm{m} / \mathrm{s}$
(ii) The ball is in contact with the bat for 0.001 s .

Use the equation in the box to calculate the force exerted by the bat on the ball.

$$
\text { force }=\frac{\text { change in momentum }}{\text { time taken for change }}
$$

Show clearly how you work out your answer.

Force = \qquad N
(c) A fielder, as he catches a cricket ball, pulls his hands backwards.

Explain why this action reduces the force on his hands.
\qquad
\qquad
\qquad
\qquad
\qquad

Q8. Tractors are often used on sloping fields, so stability is important in their design.
On the diagram, the centre of the \mathbf{X} marks the centre of mass of the tractor.

(a) Explain why the tractor has not toppled over. You may add to the diagram to help you to explain.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Give two features of the tractor which affect its stability and state how each feature could be changed to increase the tractor's stability.

Feature 1 \qquad
\qquad
Feature 2 \qquad
\qquad

Q9. A cyclist travelling along a straight level road accelerates at $1.2 \mathrm{~m} / \mathrm{s}^{2}$ for 5 seconds.
The mass of the cyclist and the bicycle is 80 kg .
(a) Calculate the resultant force needed to produce this acceleration.

Show clearly how you work out your answer and give the unit.
\qquad
\qquad
Resultant force $=$ \qquad
(b) The graph shows how the velocity of the cyclist changes with time.

(i) Complete the following sentence.

The velocity includes both the speed and the \qquad of the cyclist.
(ii) Why has the data for the cyclist been shown as a line graph instead of a bar chart?
\qquad
\qquad
(iii) The diagrams show the horizontal forces acting on the cyclist at three different speeds. The length of an arrow represents the size of the force.

Which one of the diagrams, A, B or \mathbf{C}, represents the forces acting when the cyclist is travelling at a constant $9 \mathrm{~m} / \mathrm{s}$?
\qquad
Explain the reason for your choice.
\qquad
\qquad
\qquad
\qquad
\qquad

Q10. The diagram shows a climber part way up a cliff.

(a) Complete the sentence.

When the climber moves up the cliff, the climber gains gravitational \qquad energy.
(b) The climber weighs 660 N .
(i) Calculate the work the climber must do against gravity, to climb to the top of the cliff.
\qquad
\qquad
Work done $=$ \qquad J
(ii) It takes the climber 800 seconds to climb to the top of the cliff. During this time the energy transferred to the climber equals the work done by the climber.

Calculate the power of the climber during the climb.
\qquad
\qquad
Power $=$ \qquad W
(Total 5 marks)

Q11. A student used an electric heater to heat a metal block. The student measured the energy input to the heater with a joulemeter.

Power supply
Joulemeter
Metal block
Before starting the experiment, the student reset the joulemeter to zero. The student switched the power supply on for exactly 10 minutes. During this time, the reading on the joulemeter increased to 14400.
(a) (i) Calculate the energy transferred each second from the power supply to the heater.

Show clearly how you work out your answer.

Energy transferred each second = \qquad J/s
(ii) What is the power of the heater?
\qquad
(b) The student measured the temperature of the metal block every minute. The data obtained by the student is displayed in the graph.

(i) What range of temperatures did the student measure?

From \qquad ${ }^{\circ} \mathrm{C}$ to \qquad ${ }^{\circ} \mathrm{C}$
(ii) Before starting the experiment, the student had calculated that the temperature of the block would go up by $36^{\circ} \mathrm{C}$.

The student's data shows a smaller increase.
Which one of the following statements gives the most likely reason for this?
Put a tick (\checkmark) in the box next to your answer.

The student does not read the thermometer accurately.

The block transfers energy to the surroundings. \square

The power supply is not connected correctly to the joulemeter. \square

Q12. The diagram shows a man standing in an airport queue with his wheeled bag.

(a) The man applies an upward force to the handle of his bag to stop the bag from falling. The moment of this force about the pivot is 36 Nm .

Calculate the upward force the man applies to the handle of his bag.
\qquad
\qquad
\qquad
\qquad
Force $=$ \qquad N
(b) When the man lets go of the bag handle, the bag falls and hits the floor. Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q13.

(a) In any collision, the total momentum of the colliding objects is usually conserved.
(i) What is meant by the term 'momentum is conserved'?
\qquad
\qquad
(ii) In a collision, momentum is not always conserved.

Why?
\qquad
\qquad
(b) The diagram shows a car and a van, just before and just after the car collided with the van.

(i) Use the information in the diagram to calculate the change in the momentum of the car.

Show clearly how you work out your answer and give the unit.
\qquad
\qquad
\qquad
\qquad
Change in momentum = \qquad
(ii) Use the idea of conservation of momentum to calculate the velocity of the van when it is pushed forward by the collision.

Show clearly how you work out your answer.

Velocity = \qquad m/s forward

Q14. A car has an oil leak. Every 5 seconds an oil drop falls from the bottom of the car onto the road.
(a) What force causes the oil drop to fall towards the road?
\qquad
(b) The diagram shows the spacing of the oil drops left on the road during part of a journey
A -
-
B

Describe the motion of the car as it moves from \mathbf{A} to \mathbf{B}.
\qquad
Explain the reason for your answer.
\qquad
\qquad
\qquad
\qquad
(c) When the brakes are applied, a braking force slows down and stops the car.
(i) The size of the braking force affects the braking distance of the car.

State one other factor that affects the braking distance of the car.
\qquad
(ii) A braking force of 3 kN is used to slow down and stop the car in a distance of 25 m . Calculate the work done by the brakes to stop the car and give the unit.

Work done $=$ \qquad

Q15. Forces have different effects.
(a) (i) Use the correct answer from the box to complete the sentence.

slowing	stretching	turning

The moment of a force is the \qquad effect of the force.
(ii) What is meant by the centre of mass of an object?
\qquad
\qquad
(b) Some children build a see-saw using a plank of wood and a pivot. The centre of mass of the plank is above the pivot.

Figure 1 shows a boy sitting on the see-saw. His weight is 400 N .
Figure 1

Calculate the anticlockwise moment of the boy in Nm.
\qquad
\qquad
Anticlockwise moment = \qquad Nm
(c) Figure 2 shows a girl sitting at the opposite end of the see-saw. Her weight is 300 N .

Figure 2

The see-saw is now balanced.
The children move the plank. Its centre of mass, \mathbf{M}, is now 0.25 m from the pivot as shown in Figure 3.

Figure 3

The boy and girl sit on the see-saw as shown in Figure 3.
(i) Describe and explain the rotation of the see-saw.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) The boy gets off the see-saw and a bigger boy gets on it in the same place. The girl stays in the position shown in Figure 3. The plank is balanced. The weight of the plank is 270 N . Calculate the weight of the bigger boy.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Weight of the bigger boy = \qquad N

Q1. (a) Diagram 1 shows a magnetic closure box when open and shut. It is a box that stays shut, when it is closed, due to the force between two small magnets.

These boxes are often used for jewellery.

Diagram 1

Diagram 2 shows the two magnets. The poles of the magnets are on the longer faces.

Diagram 2

(i) Draw, on Diagram 2, the magnetic field pattern between the two facing poles.
(ii) The magnets in the magnetic closure box must not have two North poles facing each other.

Explain why.
\qquad
\qquad
\qquad
\qquad
(b) A student is investigating how the force of attraction between two bar magnets depends on their separation.

She uses the apparatus shown in Diagram 3.
Diagram 3

She uses the following procedure:

- ensures that the newtonmeter does not have a zero error
- holds one of the magnets
- puts sheets of paper on top of the magnet
- places the other magnet, with the newtonmeter magnetically attached, close to the first magnet
- pulls the magnets apart
- notes the reading on the newtonmeter as the magnets separate
- repeats with different numbers of sheets of paper between the magnets.

The results are shown in the table.

Number of sheets of paper between the magnets	10	20	30	40	50	60	70	80	120
Newtonmeter reading as the magnets separate	3.1	2.6	2.1	1.5	1.1	1.1	1.1	1.1	1.1

(i) Describe the pattern of her results.
\qquad
\qquad
\qquad
\qquad
(ii) No matter how many sheets of paper the student puts between the magnets, the force shown on the newtonmeter never reaches zero.

Why?
\qquad
\qquad
(iii) The student is unable to experiment with fewer than 10 sheets of paper without glueing the magnet to the newtonmeter.

Suggest why.
\qquad
\qquad
\qquad
\qquad
(iv) Suggest three improvements to the procedure that would allow the student to gain more accurate results.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(v) The thickness of one sheet of paper is 0.1 mm .

What is the separation of the magnets when the force required to separate them is 2.1 N ?
\qquad
\qquad
\qquad
Separation of magnets = \qquad mm
(Total 15 marks)

Q2. Figure 1 shows two bar magnets suspended close to each other.
Figure 1

(a) Explain what is meant by the following statement.
'A non-contact force acts on each magnet'.
\qquad
\qquad
\qquad
\qquad
(b) Describe how to plot the magnetic field pattern of a bar magnet.
\qquad
\qquad
\qquad
\qquad
\qquad

A student has set up the apparatus shown in Figure 2. The iron rod is fixed to the track and cannot move.

Figure 2

(c) The student gives the steel ball bearing a gentle push in the direction of the iron rod.

At the same time the student closes the switch \mathbf{S}. Explain the effect on the motion of the ball bearing when the switch \mathbf{S} is closed.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 9 marks)

Q3. Figure 1 shows two iron nails hanging from a bar magnet. The iron nails which were unmagnetised are now magnetised.

Figure 1

(a) Complete the sentence.Use a word from the box.

forced	induced	permanent

The iron nails have become \qquad magnets.
(b) Each of the three metal bars in Figure $\mathbf{2}$ is either a bar magnet or a piece of unmagnetised iron.

The forces that act between the bars when different ends are placed close together are shown by the arrows.

Figure 2

Which one of the metal bars is a piece of unmagnetised iron?
Tick one box.

Bar 1

Bar 2

Bar 3

Give the reason for your answer.
\qquad
\qquad
(c) A student investigated the strength of different fridge magnets by putting small sheets of paper between each magnet and the fridge door. The student measured the maximum number of sheets of paper that each magnet was able to hold in place.

Why was it important that each small sheet of paper had the same thickness?
\qquad
\qquad
\qquad
(d) Before starting the investigation the student wrote the following hypothesis:
'The bigger the area of a fridge magnet the stronger the magnet will be.'
The student's results are given in the table below.

Fridge magnet	Area of magnet in $\mathbf{m m}^{2}$	Number of sheets of paper held
A	40	20
B	110	16
C	250	6
D	340	8
E	1350	4

Give one reason why the results from the investigation do not support the student's hypothesis.
\qquad
\qquad

Q4. A student is investigating the strength of electromagnets. Figure 1 shows three electromagnets. The student hung a line of paper clips from each electromagnet.

Figure 1

Electromagnet B

30 turns

Electromagnet C

No more paper clips can be hung from the bottom of each line of paper clips.
(a) (i) Complete the conclusion that the student should make from this investigation.

Increasing the number of turns of wire wrapped around the nail will
\qquad the strength of the electromagnet.
(ii) Which two pairs of electromagnets should be compared to make this conclusion?

Pair 1: Electromagnets \qquad and \qquad
Pair 2: Electromagnets \qquad and \qquad
(iii) Suggest two variables that the student should control in this investigation.

1. \qquad
2. \qquad
(b) The cell in electromagnet \mathbf{A} is swapped around to make the current flow in the opposite direction. This is shown in Figure 2.

Figure 2

What is the maximum number of paper clips that can now be hung in a line from this electromagnet? Draw a ring around the correct answer.

fewer than 4

4
more than 4
Give one reason for your answer.
\qquad
\qquad
\qquad
(c) Electromagnet \mathbf{A} is changed to have only 10 turns of wire wrapped around the nail.

Suggest the maximum number of paper clips that could be hung in a line from the end of this electromagnet.

Maximum number of paper clips $=$ \qquad

Q5. Figure 1 shows a straight wire passing through a piece of card.
A current (I) is passing down through the wire.

Figure 1

(a) Describe how you could show that a magnetic field has been produced around the wire.
\qquad
\qquad
\qquad
\qquad
(b) Figure 2 shows the ignition circuit used to switch the starter motor in a car on.

The circuit includes an electromagnetic switch.
Figure 2

Explain how the ignition circuit works.
\qquad
\qquad
\qquad
\qquad
\qquad

Q6. A student has made a simple electric motor. The diagram shows the electric motor.

(a) Complete the following sentence by drawing a ring around the correct line in the box.

Once the coil is spinning, one side of the coil is pushed by \quad| the cell |
| :--- |
| the coil |
| a force |

the other side is pulled, so the coil continues to spin.
(b) Suggest two changes to the electric motor, each one of which would make the coil spin faster.

1. \qquad
\qquad
2. \qquad
\qquad
(c) Suggest two changes to the electric motor, each one of which would make the coil spin in the opposite direction.
3. \qquad
\qquad
4. \qquad
\qquad

Q7. (a) Some people wear magnetic bracelets to relieve pain.
Figure 1 shows a magnetic bracelet.

There are magnetic poles at both \mathbf{A} and \mathbf{B}.
Part of the magnetic field pattern between \mathbf{A} and \mathbf{B} is shown.
Figure 1

What is the pole at \mathbf{A} ? \qquad
What is the pole at \mathbf{B} ? \qquad
(b) Figure 2 shows two of the lines of the magnetic field pattern of a current-carrying wire.

Figure 2

The direction of the current is reversed. What happens to the direction of the lines in the magnetic field pattern?
\qquad
(c) Fleming's left-hand rule can be used to identify the direction of a force acting on a current-carrying wire in a magnetic field.
(i) Complete the labels in Figure 3.

Figure 3

(ii) Figure 4 shows:

- the direction of the magnetic field between a pair of magnets
- the direction of the current in a wire in the magnetic field.

Figure 4

In which direction does the force on the wire act?
(iii) Suggest three changes that would decrease the force acting on the wire.

1. \qquad
2. \qquad
3. \qquad
(d) Figure 5 shows part of a moving-coil ammeter as drawn by a student.

The ammeter consists of a coil placed in a uniform magnetic field. When there is a current in the coil, the force acting on the coil causes the coil to rotate and the pointer moves across the scale.

Figure 5

(i) The equipment has not been set up correctly.

What change would make it work?
\qquad
\qquad
(ii) Figure 6 shows the pointer in an ammeter when there is no current.

Figure 6

What type of error does the ammeter have?
\qquad

Q8. When a conductor carrying an electric current is placed in a magnetic field a force may act on it.

(a) State two ways in which this force can be increased.

1. \qquad
2. \qquad
(b) State two ways in which this force can be made to act in the opposite direction.
3. \qquad
4. \qquad
(c) In what circumstance will no force act on a conductor carrying an electric current and in a magnetic field?
\qquad
\qquad

Q9.Many electrical appliances use the circular motion produced by their electric motor.
(a) Put ticks (Σ^{\prime}) in the boxes next to all the appliances in the list which have an electric motor.
electric drill \square
electric fan \square
electric food mixer \square
electric iron \square
electric kettle \square
electric screwdriver \square
(b) One simple design of an electric motor is shown in the diagram. It has a coil which spins between the ends of a magnet.

(i) Give two ways of reversing the direction of the forces on the coil in the electric motor.

1. \qquad
\qquad
2. \qquad
\qquad
(ii) Give two ways of increasing the forces on the coil in the electric motor.
3. \qquad
\qquad
4. \qquad
\qquad

Q10.
The left-hand rule can be used to identify the direction of the force acting on a current-carrying conductor in a magnetic field.
(a) Use words from the box to label Figure 1.

current	field	force	potential difference

Figure 1

Direction of \qquad
(b) Figure 2 shows an electric motor.

Figure 2

(i) Draw an arrow on Figure 2 to show the direction of the force acting on the wire $\mathbf{A B}$.
(ii) Suggest two changes that would increase the force acting on the wire $\mathbf{A B}$.

1. \qquad
2. \qquad
(iii) Suggest two changes that would reverse the direction of the force acting on the wire $A B$.
3. \qquad
4. \qquad
(c) A student used an electric motor to lift a mass. This is shown in Figure 3.

Figure 3

The student varied the electrical input power to the motor. For each different electrical input power, he recorded the time taken to lift the mass and calculated the output power of the motor.

The results are shown in the table.

Test	Electrical input power in watts	Work done lifting the mass in joules	Time taken to lift the mass in seconds	Output power in watts
A	20	24	2.4	10
B	40	24	1.2	20
C	60	24	0.8	30
D	80	24	0.2	120

The result for Test \mathbf{D} is anomalous.
(i) Calculate the efficiency of the motor in Test \mathbf{D}.
\qquad
\qquad
Efficiency = \qquad
(ii) Comment on your answer to part (c)(i).
\qquad
\qquad
(iii) Suggest a reason for this anomalous result.
\qquad
\qquad

Q11. The diagram shows apparatus set up by a student.

Closing the switch creates a force that acts on the wire XY.
(a) (i) Explain why a force acts on the wire XY when the switch is closed.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) The force causes the wire XY to move.

Draw an arrow on the diagram above to show the direction in which the wire XY will move.
(iii) State the effect that this experiment demonstrates.
\qquad
(b) The student replaced the battery with a low frequency alternating current (a.c.) power supply.

The student closed the switch.
(i) Describe the movement of the wire.
\qquad
(ii) Give a reason for your answer to part (i).
\qquad
\qquad
\qquad
(Total 7 marks)

Q12. The diagram shows a demonstration carried out by a teacher.

When the switch is closed, there is a current of 2 A through the wire. The wire experiences a force and moves.
(a) Use the correct word from the box to complete the sentence.
generator motor transformer

The demonstration shows the \qquad effect.
(b) State two changes that the teacher could make to the demonstration, each of which
would increase the force on the wire. The teacher does not touch the wire.

1. \qquad
\qquad
2. \qquad
\qquad
(c) State one change that the teacher could make to the demonstration to change the direction of the force on the wire.
\qquad
\qquad
(d) With the switch closed, the teacher changes the position of the wire so that the force on the wire is zero. What is the position of the wire?

Tick (\checkmark) one box.

The wire is at 90° to the direction of the magnetic field.

The wire is at 45° to the direction of the magnetic field.

The wire is parallel to the direction of the magnetic field.

Q1. Figure 1 shows a longitudinal wave being produced in a stretched spring.
Figure 1

(a) Which of the letters on Figure 1 shows the centre of a rarefaction?

Tick one box.
J

K

L

M

(b) Which two letters in Figure $\mathbf{1}$ have a distance of one wavelength between them?

Tick one box.

(c) Describe how the end of the stretched spring should be moved in order to produce a transverse wave.
\qquad
\qquad

Figure 2 shows how two students used the sound reflected off a building (an echo) to measure the speed of sound.

Figure 2

This is the method used.

1. Student \mathbf{A} hit two cymbals together and student \mathbf{B} started a stopwatch.
2. When student \mathbf{A} heard an echo she hit the cymbals together again.
3. Student B stopped the stopwatch after timing 5 echoes.

The table shows the student's results.

Time for 5 echoes in seconds
3.1
2.7
2.2
3.2

(d) The students decided that the time of 2.2 s was an anomalous result.

What was the most likely cause for this anomalous result?

Tick one box.

Not resetting the stopwatch to zero.

Starting the stopwatch too soon.

Timing less than five echoes.

Timing more than five echoes.

(e) Calculate the mean value of the time for 5 echoes.

Ignore the anomalous result.
\qquad
\qquad
mean time $=$ \qquad s
(f) The distance between student A and the building is 75 metres.

Calculate the distance the sound travels in going from student A to the building and back again five times.
\qquad
\qquad
distance $=$ \qquad m
(g) Calculate the speed of sound.

Use your answers to Questions (e) and (f) and the equation:

$$
\text { speed }=\frac{\text { distance travelled }}{\text { time }}
$$

\qquad
\qquad
\qquad
\qquad
speed of sound $=$ \qquad m/s
(h) The value for the speed of sound obtained by the students is not very accurate.

Suggest two changes to the method used by the students that would improve the accuracy.

1. \qquad
\qquad
2. \qquad
\qquad
(Total 10 marks)

Q2.(a) Figure 1 shows what happens to rays of light incident on three different surfaces.
Figure 1

A

B

C

Which one of the diagrams shows diffuse reflection?
Tick one box.
A

B

C

(b) Figure 2 shows what happens to the energy transferred by a ray of light when the ray of light hits a glass block.

Figure 2

Calculate the percentage of the energy absorbed by the glass block.
\qquad
\qquad
Percentage of energy absorbed $=$ \qquad \%
(c) Viewing an object through a colour filter may make the object look a different colour. Complete the sentences. Choose the answers from the box.

absorbs	black	blue
red	reflects	transmits

A red object viewed through a blue filter will look \qquad .

This is because the red object only \qquad red light and the blue filter only \qquad blue light.
(d) A white surface is viewed through a green filter.

What colour will the surface look?
\qquad

Cyclists often wear clothing that reflects a lot of light.
Figure 3 shows a student investigating which colours are best at reflecting light.
Figure 3

This is the method used.

1. Small squares of different coloured material were stuck onto a piece of black paper at one end of a darkened laboratory.
2. The student switched on a torch and walked slowly towards the coloured squares.
3. The student stopped walking as soon as he could clearly see a coloured square.
4. The student measured the distance between the torch and the coloured square.
(e) Give a reason why it was important the student did the investigation in a darkened laboratory.
\qquad
\qquad
(f) Give a reason why it was important the area of each coloured square was the same.
\qquad
\qquad

The table shows the student's results.

Colour of square	Distance from the torch to the square in metres
Blue	2.3
Brown	2.1
Green	3.2
Orange	3.4
Red	2.6

Figure 4 shows a bar chart with only three of the student's results.
Figure 4

(g) Complete the bar chart to show all of the results.
(h) Which colour clothing would be best for a cyclist to wear? Use the data from the table. Tick one box.
Blue \square Brown \square Green \square Orange \square Red \square

Give a reason for your answer.
\qquad
\qquad
(i) The student did the investigation again to obtain a second set of results.

The second set of results showed the same pattern as the first set.
Complete the sentence. Choose the answer from the box.

accurate	precise	repeatable	reproducible

The measurements taken by the student were \qquad .

Q3. (a) Which one of the following is not an electromagnetic wave? Tick one box.

Gamma rays

Sound \square

Ultraviolet \square

X-rays \square
(b) What type of electromagnetic wave do our eyes detect?
\qquad
(c) What is a practical use for infrared waves?Tick one box.

Cooking food \square

Energy efficient lamps \square

Medical imaging \square

Satellite communications \square

Scientists have detected radio waves emitted from a distant galaxy.
Some of the radio waves from the distant galaxy have a frequency of 1200000000 hertz.
(d) Which is the same as 1200000000 hertz?

Tick one box.
1.2 gigahertz

1.2 kilohertz

1.2 megahertz

1.2 millihertz \square
(e) Radio waves travel through space at 300000 kilometres per second $(\mathrm{km} / \mathrm{s})$.

How is $300000 \mathrm{~km} / \mathrm{s}$ converted to metres per second $(\mathrm{m} / \mathrm{s})$?
Tick one box.
$300000 \div 1000=300 \mathrm{~m} / \mathrm{s}$

$300000 \times 1000=300000000 \mathrm{~m} / \mathrm{s}$

$300000+1000=301000 \mathrm{~m} / \mathrm{s}$

$300000-1000=299000 \mathrm{~m} / \mathrm{s}$ \square
(f) Write the equation which links frequency, wavelength and wave speed.
\qquad
(g) Calculate the wavelength of the radio waves emitted from the distant galaxy. Give your answer in metres.
\qquad
\qquad
wavelength $=$ \qquad m

Q4. (a) Ultrasound is sound above the maximum frequency that humans can hear.
Tick (\checkmark) one box.

20 Hz

2000 Hz

20000 Hz

(b) The image shows a submerged submarine.

The submarine sends a pulse of ultrasound to the sea floor.
The pulse takes 0.25 seconds to travel from the submarine to the sea floor.
The speed of sound in water is $1600 \mathrm{~m} / \mathrm{s}$.
Calculate the distance from the submarine to the sea floor.
\qquad
\qquad
\qquad
\qquad
Distance $=$ \qquad m
(c) The ultrasound is reflected from the sea floor back to the submarine. Use the correct answer from the box to complete the sentence.

half	the same as	twice

The total distance the ultrasound pulse travelled is \qquad the distance to the sea floor.
(d) The submarine moves through the sea and every few seconds sends a pulse of ultrasound to check the distance to the sea floor.

The table shows the time taken for five ultrasound pulses to travel from the submarine to the sea floor and back to the submarine.

Pulse number	Time for pulse to return in seconds
1	0.50
2	0.45
3	0.38
4	0.40
5	0.48

Describe how the distance from the submarine to the sea floor changed over these five pulses.
\qquad
\qquad
\qquad
\qquad

Q5.

Figure 1 shows a ray of light travelling through a semicircular glass block.
The angle of incidence is labelled i.
Figure 1

(a) (i) The angle of incidence i equals the critical angle for the glass.

Complete Figure 1 to show what happens to the ray of light at the glass-to-air boundary.
(ii) The critical angle for the glass is 41°.

Calculate the refractive index of the glass.
\qquad
\qquad
\qquad
Refractive index $=$ \qquad
(b) Figure 2 shows what happens to a ray of light as it meets the boundary between air and water.

Figure 2

The refractive index of the water is 1.3 .
Calculate the angle of refraction \boldsymbol{r}.
\qquad
\qquad
\qquad
\qquad
\qquad
Angle of refraction $=$ \qquad degrees

Q6.
Small water waves are created in a ripple tank by a wooden bar. The wooden bar vibrates up and down hitting the surface of the water. The figure below shows a cross-section of the ripple tank and water.

(a) Which letter shows the amplitude of a water wave?

Tick one box.

J

K

L

(b) The speed of the wooden bar is changed so that the bar hits the water fewer times each second.

What happens to the frequency of the waves produced?
Tick one box.

Increases

Does not change

Decreases

(c) Describe how the wavelength of the water waves in a ripple tank can be measured accurately.
\qquad
\qquad
\qquad
\qquad
\qquad
(d) The speed of a wave is calculated using the following equation. wave speed $=$ frequency \times wavelength

The water waves in a ripple tank have a wavelength of 1.2 cm and a frequency of 18.5 Hz . How does the speed of these water waves compare to the typical speed of a person walking?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q7. Different parts of the electromagnetic spectrum are useful for different methods of communication.

The diagram shows a transmitter emitting two electromagnetic waves, \mathbf{L} and \mathbf{M}.

(a) (i) Wave L is used to send a signal to a satellite.

Which part of the electromagnetic spectrum does wave \mathbf{L} belong to?
\qquad
(ii) What name is given to the process that occurs as wave L passes into the ionosphere?
\qquad
(b) Wave \mathbf{M} is reflected by the ionosphere.
(i) On the diagram above, draw the path of wave \mathbf{M} until it reaches the receiver.
(ii) On the daigram above, draw a line to show the normal where wave \mathbf{M} meets the ionosphere. Label the line \mathbf{N}.
(c) Give two properties of all electromagnetic waves.

1. \qquad
\qquad
2. \qquad
\qquad

Q8. X-rays and ultrasound can both be used for scanning internal organs.
(a) Ultrasound is used to scan unborn babies but X-rays are not used to scan unborn babies. Explain why.
\qquad
\qquad
\qquad
\qquad
(b) The behaviour of ultrasound waves when they meet a boundary between two different materials is used to produce an image. Describe how.
\qquad
\qquad
\qquad
\qquad
(c) Figure 1 shows two pulses from a scan of an unborn baby. The emitted pulse is labelled \mathbf{A}. The returning pulse picked up by the receiver is labelled \mathbf{B}.

Figure 1

The closest distance between the unborn baby and the mother's skin is 4.0 cm . Use information from Figure 1 to calculate the average speed of the pulse.

> Average speed =
\qquad m / s
(d) Figure 2 shows an X-ray of an arm with a broken bone.

Figure 2

(i) Describe how X -rays are able to produce an image of bones.
\qquad
\qquad
\qquad
\qquad
(ii) Complete the following sentence.

X-rays are able to produce detailed images because their wavelength is very \qquad .

Q9. Bats use the reflection of high pitched sound waves to determine the position of objects. The image below shows a bat and an insect flying in front of the bat.

(a) What determines the pitch of a sound wave?Tick $(\sqrt{ })$ one box.

	Tick (\checkmark)
amplitude	
frequency	
speed	

(b) State the name given to reflected sound waves.
\qquad
(c) The bat emits a sound wave with a frequency of 25.0 kHz and a wavelength of 0.0136 metres.

Calculate the speed of this sound wave.
\qquad
\qquad
\qquad
Speed $=$ \qquad m/s
(d) Sound waves are longitudinal. Describe a longitudinal sound wave.
\qquad
\qquad
\qquad
\qquad

Q10. Figure 1 shows an X-ray of an arm with a broken bone.
Figure 1
(a) Complete the following sentence.

X-rays are part of the \qquad spectrum.
(b) Figure 2 shows how the intensity of the X-rays changes as they pass through soft tissue and reach a detector.

Figure 2

(i) Use Figure 2 to determine the intensity of X -rays reaching the detector for a 3 cm thickness of soft tissue.

Intensity of X-rays = \qquad arbitrary units
(ii) Describe how the thickness of soft tissue affects the intensity of the X -rays.
\qquad
\qquad
\qquad
\qquad
(iii) The data in Figure $\mathbf{2}$ are shown as a line graph and not as a bar chart.

Choose the reason why.
Tick (\checkmark) one box.

Both variables are categoric \square

Both variables are continuous \square

One variable is continuous and one is categoric \square
(c) What happens to X-rays when they enter a bone?
\qquad
\qquad
(d) How are images formed electronically in a modern X-ray machine?

Tick (\checkmark) one box.

With a charge-coupled device (CCD) \square

With an oscilloscope \square

With photographic film \square
(e) Radiographers who take X-ray photographs may be exposed to X-rays.
(i) X -rays can increase the risk of the radiographer getting cancer.

Why can X-rays increase the risk of getting cancer? Tick $(\sqrt{ })$ one box.

X-rays travel at the speed of light

X-rays can travel through a vacuum

X-rays are ionising \square
(ii) What should the radiographer do to reduce the risk from X -rays?
\qquad
\qquad

Q11.
The data given in the table below was obtained from an investigation into the refraction of light at an air to glass boundary.

Angle of incidence	Angle of refraction
20°	13°
30°	19°
40°	25°
50°	30°

(a) Describe an investigation a student could complete in order to obtain similar data to that given in the table above.

Your answer should consider any cause of inaccuracy in the data.
A labelled diagram may be drawn as part of your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) State the reason why light is refracted as it crosses from air into glass.
\qquad
\qquad

Q12.
The figure below shows an incomplete electromagnetic spectrum.
A microwaves B C ultraviolet D gamma
(a) What name is given to the group of waves at the position labelled \mathbf{A} in the figure above?

Tick one box.

(b) Electromagnetic waves have many practical uses.

Draw one line from each type of electromagnetic wave to its use.

Electromagnetic
 wave
 Use

(c) Complete the sentence. Use an answer from the box.

black body	ionising	nuclear

X-rays can be dangerous to people because X-rays are
\qquad radiation.

Q13. A student investigated how the magnification produced by a convex lens varies with the distance (d) between the object and the lens. The student used the apparatus shown in Figure 1.

Figure 1

(a) The student measured the magnification produced by the lens by measuring the image height in centimetres.

Explain why the image height in centimetres was the same as the magnification.
\qquad
\qquad
\qquad
\qquad
(b) The data recorded by the student is given in Table 1.

Table 1

Distance between the object and the lens in cm	Magnification
25	4.0
30	2.0
40	1.0
50	0.7
60	0.5

It would be difficult to obtain accurate magnification values for distances greater than 60 cm .

Suggest one change that could be made so that accurate magnification values could be obtained for distances greater than 60 cm .
\qquad
\qquad
(c) The graph in Figure $\mathbf{2}$ is incomplete.

Figure 2

Complete the graph in Figure 2 by plotting the missing data and then drawing a line of best fit.
(d) How many times bigger is the image when the object is 35 cm from the lens compared to when the object is 55 cm from the lens?
\qquad
\qquad
\qquad
(e) During the investigation the student also measured the distance between the lens and the image.

Table 2 gives both of the distances measured and the magnification.

Table 2

Distance between the lens and the image in cm	Distance between the lens and the object in $\mathbf{c m}$	Magnification
100	25	4.0
60	30	2.0
40	40	1.0
33	50	0.7
30	60	0.5

Consider the data in Table 2.
Give a second way that the student could have determined the magnification of the object.

Justify your answer with a calculation.
\qquad
\qquad
\qquad
\qquad
\qquad

8.Space \& other PHYSICS GCSE ONLY

Mastery Booklet

(Physics Paper 2)

Q1. (a) There are eight planets in orbit around the Sun.
Which other type of object orbits the Sun?
Tick one box.

Dwarf planet

Galaxy

Moon

Star \square
(b) Complete the sentences.

Choose the answers from the box.

black hole	gravity	friction
nebula	protostar	upthrust

The Sun was formed when a \qquad in space was pulled together by \qquad .
(c) The Sun has reached the Main Sequence stage in its lifecycle.

What stage in the lifecycle of the Sun will follow the Main Sequence stage?
\qquad

The table shows some data about the eight planets that orbit the Sun.

Planet	Distance from the Sun compared to the Earth	Time to orbit the Sun in years	Mean surface temperature in ${ }^{\circ}$ C
Mercury	0.4	0.2	+125
Venus	0.7	0.6	+465
Earth	1.0	1.0	+22
Mars	1.5	1.9	-48
Jupiter	X	12	-108
Saturn	9.6	30	-180
Uranus	19.3	84	-216
Neptune	30.0	165	-201

(d) What pattern links the distance a planet is from the Sun and the time taken by the planet to orbit the Sun?
\qquad
\qquad
\qquad
(e) Estimate the value of \mathbf{X} in the table.

Distance $=$ \qquad
(f) A student looked at the data in the table and wrote the following conclusion:
'The mean surface temperature of a planet decreases the further the planet is from the Sun.'

Explain why this conclusion is not totally correct.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q2.
(a) The figure below shows how a star is formed.

Use one answer from each box to complete the sentences.

A star starts as a huge cloud of dust and \qquad particles in space.

friction	fusion	gravity

The force of \qquad pulls the particles in the cloud closer together.

protostar	red giant	white dwarf

The compressed mass of particles
forms a \qquad .
(b) Elements heavier than iron are formed in a supernova.

What is a supernova?
Tick ($\sqrt{ }$) one box.
the explosion of a massive star

a very bright, hot young star \square
a very cool super giant star \square
(c) Brown dwarf stars are small stars too cool to give out visible light. They were first discovered in 1995. Scientists think that there are millions of these stars spread throughout the Universe.

Which one of the following is the most likely reason why brown dwarf stars were not discovered before 1995?

Tick ($\sqrt{ }$) one box.

Brown dwarf stars did not exist before 1995.

Scientists were looking in the wrong part of the Universe.

The telescopes and measuring instruments were not sensitive enough.

Q3.

(a) Brown dwarf stars are thought to have been formed in the same way as other stars. They are too small for nuclear fusion reactions to take place in them.
Brown dwarf stars emit infrared radiation but are not hot enough to emit visible light.
(i) Describe how a star is formed.
\qquad
\qquad
\qquad
\qquad
(ii) Describe the process of nuclear fusion.
\qquad
\qquad
\qquad
(iii) Scientists predicted that brown dwarf stars existed before the first one was discovered in 1995.

Suggest one reason why scientists are now able to observe and identify brown dwarf stars.
\qquad
\qquad
\qquad
(b) In the 18th century some scientists suggested a theory about how the planets formed in the Solar System. The theory was that after the Sun formed, there were cool discs of matter rotating around the Sun. These cool discs of matter formed the planets. The scientists thought this must have happened around other stars too.
(i) Thinking about this theory, what would the scientists have predicted to have been formed in other parts of the Universe?
\qquad
\qquad
(ii) Since the 1980s scientists studying young stars have shown the stars to be surrounded by cool discs of rotating matter.

What was the importance of these observations to the theory the scientists suggested in the 18th century?
\qquad
\qquad
(c) The Earth contains elements heavier than iron.

Why is the presence of elements heavier than iron in the Earth evidence that the Solar System was formed from material produced after a massive star exploded?
\qquad
\qquad

Q4.
Scientists can use the visible light spectrum from distant stars to determine whether the stars are moving.

The visible light spectrum from stars includes dark lines at specific wavelengths.
(a) The diagram shows the visible light spectrum from the Sun and from four other stars, A, B, C and D.

B

D

(i) Which star, A, B, C or D, is moving away from the Earth?

(ii) How does the speed of star \mathbf{B} compare with the speed of star \mathbf{D} ?

Tick (\checkmark) one box.

	Tick (\checkmark)
The speed of star \mathbf{B} is greater than the speed of star \mathbf{D}.	
The speed of star \mathbf{B} is less than the speed of star \mathbf{D}.	
The speed of star \mathbf{B} is the same as the speed of star \mathbf{D}.	

(b) A radio wave is emitted by a star.

The radio wave has a wavelength of 1500 m and a frequency of 200000 Hz .
Calculate the speed of this radio wave.
Choose the correct unit from the list below.

$$
\mathrm{m} \quad \mathrm{~m} / \mathrm{s} \quad \mathrm{~m} / \mathrm{s}^{2}
$$

\qquad
\qquad
\qquad
Speed $=$ \qquad unit \qquad

Q5.

The 'big bang' theory is one theory explaining the origin of the Universe.
(a) The graphs \mathbf{X}, \mathbf{Y} and \mathbf{Z}, show how the size of the Universe may have changed with time.

Which graph would the 'big bang' theory suggest is correct?

Write your answer, \mathbf{X}, \mathbf{Y} or \mathbf{Z}, in the box.

Explain the reason for your answer.
\qquad
\qquad
\qquad
\qquad
(b) In 1948, an alternative to the 'big bang' theory, called the 'steady state' theory, was developed.
The 'steady state' theory suggested that the Universe, although expanding, has always existed without a beginning in time.
(i) Complete the following sentence by drawing a ring around the correct line in the box.

The measurement of red-shift in the light from distant galaxies provides evidence

	only the 'big bang' theory. to support only the 'steady state' theory. both the 'big bang' and 'steady state' theories.

(ii) In 1965, scientists rejected the 'steady state' theory in favour of the 'big bang' theory.

Suggest what might cause scientists to stop supporting one theory and to start supporting an alternative theory.
\qquad
\qquad
\qquad

Q6.
(a) The diagram shows two parallel rays of light, a lens and its axis.
(i) Complete the diagram to show what happens to the rays.

(ii) Name the point where the rays come together.
\qquad
(iii) What word can be used to describe this type of lens?
\qquad
(b) The diagram shows two parallel rays of light, a lens and its axis.

(i) Which point A, B, C, D or E shows the focal point for this diagram?

Point \qquad
(ii) Explain your answer to part (b)(i).
\qquad
\qquad
(iii) What word can be used to describe this type of lens?
\qquad
(c) Complete the following three sentences by crossing out the two lines in each box which are wrong

In a camera a converging lens is used to produce an image on a	film
lens	
screen	

The image is | larger than |
| :--- |
| smaller than |
| the same size as | the object.

Compared to the distance of the image from the lens, the object is

```
further away from
nearer to the lens.
the same distance from
```

(d) Explain the difference between a real image and a virtual image.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q7.
(a) The diagram shows how parallel rays of light pass through a convex lens.
(i) Mark the position of the focus.

(ii) Is this a converging lens, a diverging lens, both or neither?
\qquad
(b) The diagram shows how parallel rays of light pass through a concave lens.
(i) Mark the position of the focus.

(ii) Is this a converging lens, a diverging lens, both or neither?
\qquad
(c) Complete these sentences by crossing out the two lines in each box that are wrong.

In a camera, a

The image is | $\begin{array}{l}\text { larger than } \\ \text { smaller than } \\ \text { the same size as }\end{array}$ |
| :--- | the object.

further from
nearer to
the same distance from
The image is
the same distance from object from the lens.
(d) In a cinema projector, a convex lens is used to produce a magnified, real image.

(i) What does magnified mean?
\qquad
\qquad
(ii) What is a real image?
\qquad
\qquad
(e) You are in a dark room. You have a box containing some lenses. Only one of them is a converging lens.

Describe how, by just feeling the lenses, you can pick out the converging lens.
\qquad
\qquad
\qquad
\qquad
(Total 12 marks)

Q8.

(a) A camera was used to take a photograph. The camera contains a convex (converging) lens.

Complete the ray diagram to show how the lens produces an image of the object.

$F=$ Principal focus
(b) State two words to describe the nature of the image produced by the lens in the camera.

1. \qquad
2. \qquad
(Total 6 marks)

Q9.

The diagram shows an a.c. generator.
The coil rotates about the axis shown and cuts through the magnetic field produced by the magnets.

(a) (i) A potential difference is induced between \mathbf{X} and \mathbf{Y}.

Use the correct answer from the box to complete the sentence.
electric generator motor transformer

This effect is called the \qquad effect.
(ii) What do the letters a.c. stand for?
\qquad
(iii) Name an instrument that could be used to measure the potential difference between \mathbf{X} and \mathbf{Y}.
\qquad
(b) Graph 1 shows the output from the a.c. generator.

Graph 1

(i) One of the axes on Graph $\mathbf{1}$ has been labelled 'Potential difference'.

What should the other axis be labelled?
(ii) The direction of the magnetic field is reversed.

On Graph 1, draw the output from the a.c. generator if everything else remains the same.
(c) The number of turns of wire on the coil is increased. This increases the maximum induced potential difference.

State two other ways in which the maximum induced potential difference could be increased.

1. \qquad
2. \qquad

Q10.

A transformer is used to reduce the 230 V a.c. mains to the 12 V supply required for the lighting system. The transformer has 1150 turns on its primary coil.

Calculate the number of turns on the secondary coil of the transformer. Show clearly how you work out your answer.
\qquad
\qquad
\qquad
number of turns on the secondary coil $=$ \qquad

Q11.
(a) The diagram shows a microphone being used to detect the output from a loudspeaker.
The oscilloscope trace shows the wave pattern produced by the loudspeaker.

(i) How many waves are produced by the loudspeaker in 0.0001 seconds?
\qquad
(ii) How many waves are produced by the loudspeaker every second?

Assume the input to the loudspeaker does not change.
\qquad
\qquad
(iii) A person with normal hearing cannot hear the sound produced by the loudspeaker. Explain why.
\qquad
\qquad
\qquad
(b) The diagram shows how a very high frequency sound wave can be used to check for internal cracks in a large steel bolt. The oscilloscope trace shows that the bolt does have an internal crack.

(i) Explain what happens to produce pulse \mathbf{A} and pulse \mathbf{B}.
\qquad
\qquad
\qquad
\qquad
(ii) Use the information in the diagram and the equation in the box to calculate the distance from the head of the bolt to the internal crack.
distance $=$ speed \times time

Speed of sound through steel $=6000 \mathrm{~m} / \mathrm{s}$
Show clearly how you work out your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q12. An electric toothbrush is charged by standing it on a separate charging base. The diagram shows the inside of the electric toothbrush and the charging base.

(a) An alternating potential difference (p.d.) across the coil in the charging base creates an alternating current in the coil inside the toothbrush.

Explain how.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) When the toothbrush is being charged, the p.d. across the primary coil in the charging base is 230 V . The charging p.d. across the secondary coil in the toothbrush is 7.2 V . The primary coil in the charging base has 575 turns of wire on its coil. Calculate the number of turns on the secondary coil inside the toothbrush.
\qquad
\qquad
\qquad
\qquad
Number of turns on the secondary coil $=$ \qquad

Q13. Figure 1 shows the construction of a simple transformer.
Figure 1

(a) Why is iron a suitable material for the core of a transformer?

Tick one box.
It is a metal.

It will not get hot. \square

It is easily magnetised.

It is an electrical conductor.

(b) A student makes three simple transformers, \mathbf{J}, \mathbf{K} and \mathbf{L}.

Figure 2 shows how the potential difference across the secondary coil of each transformer varies as the potential difference across the primary coil of each transformer is changed.

Figure 2

How can you tell that transformer \mathbf{J} is a step-down transformer?
\qquad
\qquad
(c) Each of the transformers has 50 turns on the primary coil.

Calculate the number of turns on the secondary coil of transformer \mathbf{L}.
Use the correct equation from the Physics Equations Sheet.
\qquad
\qquad
\qquad
Number of turns on the secondary coil = \qquad

Q14.
(a) The 'Big Bang' theory uses red-shift as evidence to explain the beginning of the Universe.

How does the red-shift from distant galaxies provide evidence for the beginning of the Universe?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Cosmic microwave background radiation (CMBR) is a type of electromagnetic radiation. CMBR fills the Universe. It was first discovered in 1965 by two astronomers called Penzias and Wilson.
(i) What do scientists believe is the origin of CMBR?
\qquad
\qquad
(ii) Why was the discovery of CMBR so important to the scientists believing the 'Big Bang' theory to be correct?
\qquad
\qquad
(iii) How is the wavelength of CMBR likely to change, if at all, over the next billion years?

Give a reason for your answer.
\qquad
\qquad

Q15. (a) Human ears can detect a range of sound frequencies.
(i) Use the correct answers from the box to complete the sentence.

2	20	200	2000	20000

The range of human hearing is from about \qquad Hz to \qquad Hz .
(ii) What is ultrasound?
\qquad
\qquad
(iii) Ultrasound can be used to find the speed of blood flow in an artery. State one other medical use of ultrasound.
\qquad
(b) The speed of an ultrasound wave in soft tissue in the human body is $1.5 \times 10^{3} \mathrm{~m} / \mathrm{s}$ and the frequency of the wave is $2.0 \times 10^{6} \mathrm{~Hz}$. Calculate the wavelength of the ultrasound wave.
\qquad
\qquad
Wavelength $=$ \qquad m
(c) When ultrasound is used to find the speed of blood flow in an artery:

- an ultrasound transducer is placed on a person's arm
- ultrasound is emitted by the transducer
- the ultrasound is reflected from blood cells moving away from the transducer
- the reflected ultrasound is detected at the transducer.

Describe the differences between the ultrasound waves emitted by the transducer and the reflected waves detected at the transducer.
\qquad
\qquad
\qquad

Q16.
The vibration caused by a P wave travelling at $7.6 \mathrm{~km} / \mathrm{s}$ has been recorded on a seismic chart.

(i) How many waves are produced in one second?
\qquad
(ii) Write down the equation which links frequency, wavelength and wave speed.
\qquad
(iii) Calculate the wavelength of the P wave. Show clearly how you work out your answer and give the unit.
\qquad
\qquad
\qquad
Wavelength $=$ \qquad

Q17. A teacher demonstrates the production of circular waves in a ripple tank.
Diagram 1 shows the waves at an instant in time.

Diagram 1

(a) Show on Diagram 1 the wavelength of the waves.
(b) The teacher moves the source of the waves across the ripple tank.

Diagram 2 shows the waves at an instant in time.
Diagram 2
(Actual size)

(i) Use the correct answer from the box to complete each sentence.

decreased	increased	stayed the same

In Diagram 2, the observed wavelength of the waves at \mathbf{X} has \qquad .

In Diagram 2, the frequency of the waves at \mathbf{X}
has \qquad .
(ii) Take measurements from Diagram 2 to determine the wavelength of the waves received at \mathbf{X}. Give the unit.
\qquad
\qquad
Wavelength = \qquad
(c) The teacher uses the waves in the ripple tank to model the changes in the wavelengths of light observed from distant galaxies. When observed from the Earth, there is an increase in the wavelength of light from distant galaxies.
(i) State the name of this effect.
\qquad
(ii) What does this increase in wavelength tell us about the movement of most galaxies?
\qquad
\qquad
(iii) Explain how this observation supports the Big Bang theory of the formation of the Universe.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iv) State one other piece of evidence that supports the Big Bang theory of the formation of the Universe.
\qquad
\qquad

Mark schemes

Q1.

(a) (i) not moving
(ii) straight line from origin to $(200,500)$
ignore a horizontal line after $(200,500)$
(b) 35000
allow 1 mark for correct substitution, ie 14000×2.5 provided no subsequent step an answer of 87500 indicates acceleration (2.5) has been squared and so scores zero

Q2.
(a) make the rod longer
push down on the rod with a greater force
(b) particles are close together
so no room for more movement
dependent on 1st marking point
(c) (i) downward force produces pressure in liquid reference to compression of liquid negates this mark
this pressure is the same at all points in a liquid or this pressure is transmitted equally through the liquid and $P=F / A$ or $F=P \times A$ area (at load) bigger (so force bigger)
(ii) the force acting on the car moves less distance than the effort force

Q3.
(a) Zero / 0
velocity / speed $=0$
accept it is not moving
paintball has not been fired is insufficient
(b) 0.27
allow 1 mark for correct substitution, ie $p=0.003(0) \times 90$ provided no subsequent step
(c) equal to

Q4.
(a) the forces are equal in size and act in opposite directions
(b) (i) forwards / to the right / in the direction of the 300 N force answers in either order
accelerating
(ii) constant velocity to the right
(iii) resultant force is zero
accept forces are equal / balanced
so boat continues in the same direction at the same speed
(iv) parallelogram or triangle is correctly drawn with resultant

value of resultant in the range $545 \mathrm{~N}-595 \mathrm{~N}$
parallelogram drawn without resultant gains 1 mark If no triangle or parallelogram drawn:
drawn resultant line is between the two 300 N forces gains 1 mark
drawn resultant line is between and longer than the two 300 N forces gains 2 marks

Q5.

(a) 3000
correct substitution of 24 / 0.008 gains 1 mark provided no subsequent steps are shown
$\mathrm{N} / \mathrm{m}^{2}$ or Pa
(b) (i) K
accept ringed K in table
(ii) water exiting bottle one-third of vertical height of K allow less than half vertical height of spout shown, judged by eye
water landing twice the distance of the spout shown in the diagram accept at least one and a half times further out than spout shown, judged by eye do not accept water hitting the side of the sink ignore trajectory
(c) water will land on the (vertical) side of the sink accept sink not long / wide / big enough
or
water will dribble down very close to the bottle
or
that part of the bottle is curved
do not accept goes out of the sink

Q6.
(a) (i) friction
accept any way of indicating the correct answer
(ii) gravity
accept any way of indicating the correct answer
(b) (i) accelerates or speed / velocity increases accept faster and faster (1 mark) do not accept faster pace / falls faster or suggestions of a greater but constant speed

downwards / falls

accept towards the Earth / ground
this may score in part (b)(ii) if it does not score here and there is no contradiction between the two parts
(ii) constant speed / velocity or terminal velocity / speed or zero acceleration stays in the same place negates credit

Q7.
(a) 98
allow 1 mark for correct substitution
ie $1 / 2 \times 0.16 \times 35 \times 35$ provided no subsequent step shown an answer of 98000 scores 0
(b) (i) 9.6
allow 1 mark for (change in velocity =) 60 ignore negative sign
(ii) 9600
ignore negative sign
or
their (b)(i) $\div 0.001$ correctly calculated, unless (b) (i) equals 0
(c) increases the time
to reduce/change momentum (to zero)
only scores if $1^{\text {smakaksooed }}$
decreases rate of change of momentum scores both marks provided there are no contradictions accept decreased acceleration/deceleration equations on their own are insufficient

Q8.

(a) (line of action of) its weight
falls inside its wheel base
accept 'falls between the wheels'
the first two points may be credited by adding a vertical line from the centre of the X on the diagram (1) and labelling it weight / force / with a downwards arrow (1)
provided there is no contradiction between what is added to the diagram and anything which may be written
(so there is) no (resultant / clockwise) moment / turning effect
(b) centre of mass should be lower accept '... centre of gravity' accept 'weight / mass low down' not just 'lower the roof'
wheel base should be wider accept 'long axle(s)' for 'wide wheel base' allow bigger / larger wheel base do not credit 'long wheel base' responses in either order

Q9.
(a) 96
allow 1 mark for correct substitution

$$
\text { ie } 80 \times 1.2
$$

newton or N
allow Newton
do not allow n
(b) (i) direction
(ii) velocity and time are continuous (variables)
answers must refer to both variables accept the variables are continuous / not categoric accept the data / 'it' is continuous accept the data / 'it' is not categoric
(iii) C
velocity is not changing
the $\mathbf{2}$ marks for reason may be scored even if \boldsymbol{A} or \boldsymbol{B} are chosen
accept speed for velocity
accept speed is constant ($9 \mathrm{~m} / \mathrm{s}$)
accept not decelerating
accept not accelerating
accept reached terminal velocity
forces must be balanced
accept forces are equal
accept arrows are the same length / size
or
resultant force is zero
do not accept the arrows are equal

Q10.

(a) potential
(b) (i) 13200
allow 1 mark for correct substitution, ie 660×20 provided no subsequent step shown
(ii) 16.5
allow 1 mark for correct
or
$\frac{\text { their (b)(i) }}{800}$ correctly calculated
substitution, ie $\frac{13200}{800}$ or $\frac{\text { their (b)(i) }}{800}$
provided no subsequent step shown

Q11.
(a) (i) 24
allow 1 mark for converting time to 600 seconds
or showing method ie 14400/10
or $\frac{14400}{10 \times 60}$
provided no further steps shown
(ii) 24
ignore any unit
or
their (a)(i)
(b) (i) $20 \quad 45$
both required - either order
(ii) the block transfers energy to the surroundings

Q12.
(a) 60
allow 1 mark for correct substitution (with d in metres), ie $36=F \times 0.6$
an answer of 0.6 or 6 gains 1 mark
(b) the line of action of the weight lies outside the base / bottom (of the bag) accept line of action of the weight acts through the side accept the weight (of the bag) acts outside the base / bottom (of the bag)
a resultant / overall / unbalanced moment acts (on the bag)
accept the bag is not in equilibrium do not accept the bag is unbalanced

Q13.
(a) (i) momentum before = momentum after accept no momentum is lost accept no momentum is gained
or
(total) momentum stays the same
(ii) an external force acts (on the colliding objects) accept colliding objects are not isolated
(b) (i) 9600
allow 1 mark for correct calculation of momentum before or after ie 12000 or 2400
or
correct substitution using change in velocity $=8 \mathrm{~m} / \mathrm{s}$
ie 1200×8
$\mathrm{kg} \mathrm{m} / \mathrm{s}$
or
Ns
this may be given in words rather than symbols do not accept nS
(ii) 3 or their (b)(i) 3200 correctly calculated allow 1 mark for stating momentum before = momentum after
or
clear attempt to use conservation of momentum

Q14.

(a) gravitational / gravity / weight
do not accept gravitational potential
(b) accelerating
accept speed / velocity increases
the distance between the drops increases
but the time between the drops is the same
accept the time between drops is (always) 5 seconds accept the drops fall at the same rate
(c) (i) any one from:

- speed / velocity
- (condition of) brakes / road surface / tyres
- weather (conditions)
accept specific examples, eg wet / icy roads accept mass / weight of car friction is insufficient reference to any factor affecting thinking distance negates this answer
(ii) 75000
allow 1 mark for correct substitution, ie 3000×25 provided no subsequent step shown
or allow 1 mark for an answer 75
or allow 2 marks for 75 (+ incorrect unit), eg 75 kN
joules / J
do not accept j
an answer 75 kJ gains 3 marks for full marks the unit and numerical answer must be consistent

Q15.
(a) (i) turning
accept turning ringed in the box
(ii) point at which mass (or weight) may be thought to be concentrated accept the point from which the weight appears to act allow focused for concentrated do not accept most / some of the mass do not accept region / area for point
(b) $600(\mathrm{Nm})$
400×1.5 gains 1 mark provided no subsequent steps shown
(c) (i) plank rotates clockwise accept girl moves downwards do not accept rotates to the right
(total) CM > (total) ACM
accept moment is larger on the girl's side
weight of see-saw provides CM
answer must be in terms of moment
maximum of $\mathbf{2}$ marks if there is no reference to the weight of the see-saw
(ii) $\quad \mathrm{W}=445(\mathrm{~N})$
$W \times 1.5=(270 \times 0.25)+(300 \times 2.0)$ gains 2 marks allow for 1 mark: total CM = total ACM either stated or implied or
$(270 \times 0.25)+(300 \times 2.0)$
if no other marks given

Mark schemes

Q1.
(a) (i) field pattern shows:
some straight lines in the gap
direction N to S

(ii) north poles repel
(so) box will not close
(b) (i) as paper increases (rapid) decrease in force needed
force levels off (after 50 sheets)
(ii) the newtonmeter will show the weight of the top magnet
(iii) (top) magnet and newtonmeter separate before magnets separate accept reverse argument
(because) force between magnets is greater than force between magnet and hook of newtonmeter
(iv) any three from:

- means of reading value of force at instant the magnets are pulled apart
- increase the pulling force gently
or
use a mechanical device to apply the pulling force
- clamp the bottom magnet
- use smaller sheets of paper
- fewer sheets of papers between readings (smaller intervals)
- ensure magnets remain vertical
- ensure ends of magnet completely overlap
- repeat the procedure several times for each number of sheets and take a mean
- make sure all sheets of paper are the same thickness
(v) $3(\mathrm{~mm})$
30×0.1 ecf gains 2 marks
2.1 N corresponds to 30 sheets gains 1 mark

Q2.
(a) the magnets are not touching
but (each) experiences a force allow but there is a force of attraction between them
(b) place a (plotting) compass near the (north / south) pole of the magnet and mark the direction that the compass points
move the (plotting) compass around the bar magnet (to the
other pole) marking at (regular) intervals the direction the compass points
join the points up and add an arrow pointing from the north pole to the south pole
(c) (closing switch S) causes a current in the coil allow switches on the electromagnet
a magnetic field is created
a force of attraction acts on the ball bearing
so the ball bearing accelerates (towards the iron rod)

Q3.

(a) induced
(b) bar 2
(the same end) of bar 1 attracts both ends of bar 2
or
only two magnets can repel so cannot be bar 1 or bar 3
(c) so the results for each magnet can be compared
or
so there is only one independent variable
fair test is insufficient allow different thickness of paper would affect number of sheets each magnet could hold accept it is a control variable
(d) because the magnet with the biggest area was not the strongest accept any correct reason that confirms the hypothesis is wrong eg smallest magnet holds more sheets than the largest

Q4.
(a) (i) increase
(ii) A and B
and
B and C
both required for the mark
either order
(iii) any two from:

- size of nail
or
nail material
allow (same) nail
- current
allow (same) cell
allow p.d.
same amount of electricity is insufficient
- (size of) paper clip
- length of wire
accept type / thickness of wire
(b) 4
B picks up the same number as C, so this electromagnet would pick up the same number as A
or
direction of current does not affect the strength of the electromagnet
allow it has got the same number of turns as A
(c) 2
allow 1 or 3

Q5.
(a) move a (magnetic / plotting) compass around the wire
the changing direction of the compass needle shows a magnetic field has been produced

OR
sprinkle iron filings onto the card (1)
tapping the card will move the filings to show the magnetic field (pattern) (1)
(b) Level 2 (3-4 marks):

A detailed and coherent explanation is provided. The response makes logical links between clearly identified, relevant points that explain how the ignition circuit works.

Level 1 (1-2 marks):

Simple statements are made. The response may fail to make logical links between the points raised.

0 marks:

No relevant content.

Indicative content

- closing the (ignition) switch causes a current to pass through the electromagnet
- the iron core (of the electromagnet) becomes magnetised
- the electromagnet / iron core attracts the (short side of the) iron arm
- the iron arm pushes the (starter motor) contacts (inside the electromagnetic switch) together
- the starter motor circuit is complete
- a current flows through the starter motor (which then turns)

Q6.
(a) a force
(b) any two from:

- more powerful magnet do not allow 'bigger magnet'
- reduce the gap (between magnet and coil)
- increase the area of the coil
- more powerful cell
do not allow 'bigger cell'
accept battery for cell
accept add a cell
accept increase current / potential difference
- more turns (on the coil)
allow 'more coils on the coil' do not allow 'bigger coil'
(c) reverse the (polarity) of the cell allow 'turn the cell the other way round' accept battery for cell
reverse the (polarity) of the magnet allow 'turn the magnet the other way up'

Q7.
(a) north (pole)
accept N
north (pole)
both needed for mark
(b) reverses
accept changes direction
(c) (i) first finger:
(direction of) (magnetic) field
second finger:
(direction of) (conventional) current
(ii) into (plane of the) paper
(iii) less current in wire
accept less current / voltage / more resistance / thinner wire
weaker field
allow weaker magnets / magnets further apart do not accept smaller magnets
rotation of magnets (so) field is no longer perpendicular to wire
(d) (i) reverse one of the magnets
do not accept there are no numbers on the scale
(ii) systematic or zero error
accept all current values will be too big
accept it does not return to zero
accept it does not start at zero

Q8.
(a) increase the current (1)
credit increase the p.d./voltage
credit reduce the resistance
credit have thicker wiring
credit add extra / more cells
increase the magnetic field (strength) (1)
credit 'have stronger magnet(s) do not credit 'bigger magnets' either order
(b) either reverse polarity or connect the battery the other way round
either reverse direction of the magnetic field
or put the magnet the other way round / reverse the magnet
do not give any credit to a response in which both are done at the same time
either order

Q9.
(a) electric drill, electric fan, electric food mixer and electric screwdriver all four ticked and no others (2) either all four of these ticked and only one other (1) or any three of these ticked and none/one/two of the others (1)
(b) (i) reverse (the direction of the) current (1) or reverse the connections (to the battery)
reverse (the direction of the) magnetic field (1) or reverse the (magnetic) poles /ends do not credit 'swap the magnets (around)'
(ii) any two from:

- increase the strength of the magnet(s)/(magnetic) field do not credit 'use a bigger magnet'
- increase the current allow 'increase the voltage/p.d.' allow add cells/batteries allow increase the (electrical) energy allow increase the power supply allow 'decrease the resistance' allow 'increase charge' allow ' increase the electricity'
do not credit 'use a bigger battery'
- reduce the gap (between coil/armature and poles/magnets)
allow increase the (number of) coils
- increase the turns (on the coil/armature)
do not credit 'use a bigger coil'

Q10.

(a) field

> correct order only
current
force
accept motion
accept thrust
(b) (i) arrow pointing vertically downwards
(ii) increase current / p.d.
accept voltage for p.d.
increase strength of magnetic field accept move poles closer together
(iii) reverse (poles of) magnets
reverse battery / current
efficiency $=120 / 80(\times 100)$
gains 1 mark
an answer of 1.5 \% or 150
gains 1 mark
(ii) efficiency greater than 100\%
or
output is greater than input
or
output should be 40 (W)
(iii) recorded time much shorter than actual time
accept timer started too late accept timer stopped too soon

Q11.

(a) (i) (closing the switch makes) a current (through the wire)
(the current flowing) creates a magnetic field (around the wire)
this field interacts with the permanent magnetic field accept links / crosses attracts / repels is insufficient
(ii) arrow drawn showing upwards force on XY
judge vertical by eye the arrow must be on or close to the wire $X Y$
(iii) motor
accept catapult
(b) (i) the wire moves up and down
or
the wire vibrates
back and forth or side to side is insufficient for vibrate
(ii) the force (continually) changes direction (from upwards to downwards, on the wire)
accept the direction of the magnetic field (of the wire) changes

Q12.
(a) motor
(b) increase the strength of the magnetic field
accept use a stronger magnet use a larger / bigger magnet is insufficient do not accept move magnets closer
increase the (size of the) current accept use a current greater than 2 (A) accept increase the p.d. / voltage (of the power supply) increase the power supply is insufficient
(c) any one from:

- (reverse the) direction of the current accept swap the wires at the power supply connections swap the wires around is insufficient
- (change the) direction of the magnetic field accept turn the magnet around do not accept use an a.c. supply
(d) The wire is parallel to the direction of the magnetic field.

Mark schemes

Q1.

(a) K
(b) L and \mathbf{M}
(c) the oscillation should be perpendicular to the direction of the stretched spring
allow up and down
(d) timing less than five echoes
(e) 3 (.0)
(f) $\quad 750(\mathrm{~m})$
(g) speed $=\frac{750}{3}$
an answer of $250(\mathrm{~m} / \mathrm{s})$ scores 2 marks

```
    speed \(=250(\mathrm{~m} / \mathrm{s})\)
        allow ecf from parts (e) and (f)
```

(h) any two from:

- time more than 5 echoes
- students stand further from the building
- have 2 or more students (independently) measuring the time taken use a stopwatch with a higher resolution is insufficient

Q2.
(a) A
(b) $2(\%)$
(c) black

> correct order only
reflects
transmits
(d) green
(e) without a darkened laboratory would not be able to see reflected light
allow would see all squares all of the time
(f) so same 'amount' of light is incident on each square
a fair test is insufficient
control variable is insufficient
(g) two bars drawn at the correct height allow 1 mark for 1 correct bar
both bars correctly labelled
(h) orange
reason only scores if orange chosen
can be seen from the furthest away
allow it reflects the most light
(i) repeatable

Q3.

(a) sound
(b) (visible) light
(c) cooking food
(d) 1.2 gigahertz
(e) $300000 \times 1000=300000000 \mathrm{~m} / \mathrm{s}$
(f) wave speed $=$ frequency \times wavelength
allow $v=f \lambda$
(g) $300000000=1200000000 \times \lambda$
an answer of 0.25 scores 3 marks

$$
\begin{aligned}
& \lambda=\frac{300000000}{1200000000} \\
& \quad \text { allow ecf from (e) }
\end{aligned}
$$

$$
\lambda=0.25(\mathrm{~m})
$$

Q4.

(a) 20000 Hz
(b) $\quad 400(\mathrm{~m})$
allow 1 mark for correct
substitution ie 1600×0.25
provided no subsequent steps shown an answer of $200(\mathrm{~m})$ gains 1 mark
(c) twice
(d) From pulse 1 to pulse 3 the distance (to the sea floor) decreased accept the sea got shallower
or
the submarine went deeper for the distance decreased
then (after pulse 3) the distance (to the sea floor) increased accept the sea got deeper
or
the submarine rose for the distance increased
An answer of the distance decreased then increased gains 1 mark

Q5.
(a) (i) line drawn at 90 degrees to the normal:

ignore (partial) reflection of the ray
(ii) 1.5
award both marks for an answer that rounds to 1.5
award 1 mark for correct substitution ie 1 / sin 41 or 1 / 0.656(059)
(b) 26
award $\mathbf{3}$ marks for an answer that rounds to 26
award 2 marks for
$0.57(3576)$
$1.3=\sin \mathrm{r}$
or
$r=\sin ^{-1}(0.57(3576) / 1.3)$
award 1 mark for correct substitution.ie $1.3=\frac{\sin 35}{\sin r}$
or
$\sin 35^{\circ}$ shown correctly, ie $0.57(3576)$, or used correctly in the calculation
an answer of 0.44 scores 2 marks
an answer of 26.9 scores 0

Q6.
(a) K
(b) Decreases
(c) use a metre rule / 30 cm ruler to measure across 10 (projected) waves accept any practical number of waves number for 10
and then divide by 10
(d) $1.2 \mathrm{~cm}=0.012 \mathrm{~m}$
$18.5 \times 0.012=0.22(2)(\mathrm{m} / \mathrm{s})$
allow 0.22(2) with no working shown for 2 marks
typical walking speed $=1.5 \mathrm{~m} / \mathrm{s}$
accept any value e.g. in the range 0.7 to $2.0 \mathrm{~m} / \mathrm{s}$
so the water waves are slower (than a typical walking speed)
this cannot score on its own

Q7.
(a) (i) microwave
(ii) refraction
(b) (i) wave M continues as a straight line to the ionosphere and shown reflected
accept reflection at or within the ionosphere
correctly reflected wave shown as a straight line reaching the top of the receiver
if more than 2 rays shown 1 mark maximum

ignore arrows
(ii) normal drawn at point where their \mathbf{M} meets the ionosphere

(c) any two from:

- transverse
- same speed (through air)
accept speed of light or $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
- can be reflected
- can be refracted
- can be diffracted
- can be absorbed
- transfer energy
- can travel through a vacuum
an answer travel at the same speed though a vacuum scores 2 marks
- can be polarised
- show interference.
travel in straight lines is insufficient

Q8.
(a) ultrasound is not ionising
allow ultrasound does not harm the (unborn) baby
but X -rays are ionising
so X-rays increase the health risk to the (unborn) baby
accept specific examples of health risks, eg cancer, stunted growth, impaired brain function etc
X-rays are dangerous is insufficient
(b) ultrasound/waves are partially reflected
(when they meet a boundary) (between two different media / substances / tissues)
the time taken is measured (and is used to determine distances)
(c) $1600(\mathrm{~m} / \mathrm{s})$
$800(\mathrm{~m} / \mathrm{s})$ gains 2 marks
$160000(\mathrm{~m} / \mathrm{s})$ gains 2 marks
$0.0016(\mathrm{~m} / \mathrm{s})$ gains 2 marks
allow 2 marks for
$\frac{0.04}{25 \times 10^{-6}}$
or
$\frac{0.08}{50 \times 10^{-6}}$
$80000(\mathrm{~m} / \mathrm{s})$ gains 1 mark
$0.0008(\mathrm{~m} / \mathrm{s})$ gains 1 mark
allow 1 mark for
$\frac{0.04}{25}$
or
$\frac{0.08}{50}$
allow 1 mark for evidence of doubling the distance or halving the time
(d) (i) they are absorbed by bone
allow stopped for absorbed
X-rays are reflected negates this mark
they are transmitted by soft tissue
allow pass through for transmitted
allow flesh / muscle / fat
accept less (optically) dense material for soft tissue
(the transmitted) X-rays are detected
(ii) short
accept small

Q9.
(a) frequency
(b) echo(es)
(c) $340(\mathrm{~m} / \mathrm{s})$
allow 1 mark for correct substitution ie 25000×0.0136 provided no subsequent step

Or
allow 1 mark for a correct calculation showing an incorrect value from conversion to hertz $\times 0.0136$ an answer of 0.34 gains 1 mark
(d) (a wave where the) oscillations are parallel to the direction of energy transfer both marking points may appear as labels on a diagram accept vibrations for oscillations accept in same direction as for parallel to allow direction of wave (motion) for direction of energy transfer
allow 1 mark for a correct calculation showing an incorrect value from conversion to hertz $\times 0.0136$
causing (areas of) compression and rarefaction accept correct description in terms of particles mechanical wave is insufficient needs a medium to travel through is insufficient

Q10.

(a) electromagnetic
accept e.m.
(b) (i) 2.2 (arbitrary units)
allow an answer between 2.1 and 2.3
(ii) the thicker the tissue the lower the intensity accept more intensity is needed to pass through thicker tissue
the relationship is not linear
accept the line is not straight
allow for 1 mark
it still goes through with thicker tissue
or
intensity does not reach zero
or
at $5 \mathrm{~cm} X$ rays still pass through
(iii) Both variables are continuous
(c) (they are) absorbed accept (they are) stopped
(d) With a charge-coupled device (CCD).
(e) (i) X-rays are ionising
(ii) stand behind a (protective) screen accept leave the room accept wear a lead apron

Q11.
(a) Level 3 (5-6 marks):

A detailed and coherent plan covering all the major steps is provided. The steps in the method are logically ordered. The method would lead to the production of valid results.

A source of inaccuracy is provided

Level 2 (3-4 marks):

The bulk of a method is described with mostly relevant detail. The method may not be in a completely logical sequence and may be missing some detail.

Level 1 (1-2 marks):

Simple statements are made. The response may lack a logical structure and would not lead to the production of valid results.

0 marks:

No relevant content.

Indicative content

place a glass block on a piece of paper
draw around the glass block and then remove from the paper
draw a line at 90° to one side of the block (the normal)
use a protractor to measure and then draw a line at an angle of 20° to the normal replace the glass block
using a ray box and slit point the ray of light down the drawn line
mark the ray of light emerging from the block
remove the block and draw in the refracted ray
measure the angle of refraction with a protractor
repeat the procedure for a range of values of the angle of incidence

possible source of inaccuracy

the width of the light ray
which makes it difficult to judge where the centre of the ray is
(b) velocity / speed of the light decreases allow velocity / speed of the light changes

Q12.
(a) radio
(b)

award 1 mark for each correct line
if more than one line is drawn from any em wave then none of those lines gain credit
(c) ionising

Q13.
(a) magnification $=\frac{\text { image height }}{\text { object height }}$
dividing by an object height of 1 cm gives the same (numerical) value
(b) accept anything practical that would work eg:
use a taller object
use a (travelling) microscope
attach a scale to the screen and use a magnifying glass
(c) both points plotted correctly
correct line of best fit drawn
a curve passing through all points (within $1 / 2$ square), judge by eye
(d) values of 1.4 and 0.6 extracted from the graph
2.33 times bigger
accept any number between 2.3 and 2.5 inclusive
(e) by dividing the distance between the lens and the image by the distance between the lens and the object
at least one correct calculation and comparison eg 100 $\div 25=4$ which is the same as the measured magnification

Mark schemes

Q1.

(a) dwarf planet
(b) nebula

> correct order only
gravity
(c) (becomes a) red giant
(d) the greater the distance (from the Sun) the greater the time taken to orbit the Sun
(e) any value between 3 and 7 inclusive
(f) because some planets do not fit the pattern
named planet that does not fit pattern
eg Venus
reason why named planet does not fit pattern
its temperature is higher than expected
or
Uranus: its temperature is lower than expected
or
Neptune: its temperature is higher than expected
or
Mercury: its temperature is lower than expected

Q2.
(a) gas
correct order only
gravity
protostar
accept correct word circled in box provided no answer given in answer space
(b) the explosion of a massive star
(c) The telescopes and measuring instruments were not sensitive enough.

Q3.

(a) (i) (enough) dust and gas (from space) is pulled together accept nebula for dust and gas accept hydrogen for gas accept gas on its own dust on its own is insufficient mention of air negates this mark

by:

gravitational attraction
or
gravitational forces
or
gravitaty
ignore any (correct) stages beyond this
(ii) joining of two (atomic) nuclei (to form a larger one) do not accept atoms for nuclei
(iii) more sensitive astronomical instruments / telescopes
or
infrared telescopes developed accept better technology more knowledge is insufficient
(b) (i) (other) planets / solar systems do not accept galaxy moons is insufficient
(ii) provided evidence to support theory accept proves the theory
(c) elements heavier than iron are formed only when a (massive) star explodes accept materials for elements accept supernova for star explodes accept stars can only fuse elements up to (and including) iron

Q4.
(a) (i) C
(ii) The speed of star \mathbf{B} is less than the speed of star \mathbf{D}.
(b) 300000000
allow 1 mark for correct substitution ie 200000×1500 provided no subsequent step shown
m/s
allow unit correctly indicated in list if not written in answer space

Q5.
(a) Y
accept cannot be \boldsymbol{X} as size is increasing
shows Universe expanding
this scores if \boldsymbol{Y} or \boldsymbol{Z} is chosen
accept exploding outwards
from a (very small) point
this only scores if \boldsymbol{Y} is chosen
accept from zero (size)
answers in terms of planets
negate the last two mark points
(b) (i) both the 'big bang' and 'steady state' theories
(ii) (new) evidence that supports / disproves a theory accept proves for supports
or
(new) evidence not supported by current theory
accept there may be more evidence supporting one (theory) than the other (theory)
accept new evidence specific to this question eg measurement of CBR
or
some types of star only found in distant parts of Universe (steady state suggests should be same throughout Universe)
(a) (i) rays continued to meet on the right hand side of the lens and beyond must be straight lines from the right hand side of the lens ignore details through the lens allow if no arrows
meet exactly on the axis
negate mark if contradictory arrow(s) added do not need to go beyond the focus for this mark
(ii) (principal) focus
or focal (point)
(iii) converging
or convex
(b) (i) A
(ii) rays seem to come from this point or words to this effect or shows this on the diagram
(iii) diverging
or concave
(c) film
accept any unambiguous method of showing the correct response
smaller than
further away from
(d) any three from:

- real image can be put on a screen allow film
- virtual image cannot be put on a screen / film
- virtual image is imaginary
- real image is formed where (real) rays cross / converge allow real image has light travelling through it
- virtual image is where virtual / imaginary rays (seem to) come from or virtual image is where rays seem to come from
- virtual image formed where virtual rays intersect / cross
(a) (i) point where the rays cross do not credit if ambiguous
(ii) converging (lens)
do not accept convex
(b) (i) point where the rays appear to diverge from
this should appear to be within 10 mm in front of the back of the arrows on the approximate centre line need not be accurately constructed using a ruler
(ii) diverging (lens)
(c) converging
film
smaller than
nearer to
accept any clear indication of the response e.g. ticking, ringing, writing in after a mistake
(d) (i) (image) bigger than object enlarge accept just 'made bigger'
(ii) it / real image can be put on a screen or real image on the opposite side of the lens to the object
accept 'not an imaginary or virtual image'
assume 'it' refers to a real image
do not credit 'it can be seen'
(e) either (the converging lens is) thick in the middle thin(ner) at the edge
thickest in the middle gains 2 marks
or (both) sides bend outwards (1) in the middle (1)
convex gains 2 marks
suitable diagrams gains 2 marks
or one side bends in the middle (1) more than the other side bends inwards (in the middle) (1)

Q8.
(a) any two correct construction lines:
if more than 2 construction lines treat as a list

- line passing straight through centre of lens (\& out other side)
- line travelling parallel to principal axis \& then being refracted through principal focus (on RHS)
- line travelling through principal focus (on LHS) \& then being refracted to be parallel to principal axis (on RHS)
inverted image drawn (with arrow) in correct location
one arrowhead from object to image on any construction ray conflicting arrowheads negate this mark

$F=$ Principal focus

1
(b) any two from:

- inverted
accept upside down
- real
- diminished / smaller
allow ecf if ray diagram wrongly drawn but descriptions must relate to their image
a converse negates mark, eg real and virtual scores zero

Q9.
(a) (i) generator
(ii) alternating current
(iii) voltmeter / CRO / oscilloscope / cathode ray oscilloscope
(b) (i) time
(ii) peaks and troughs in opposite directions
amplitude remains constant dependent on first marking point
(c) any two from:

- increase speed of coil
- \quad strengthen magnetic field
- increase area of coil
do not accept larger

Q10.

60
allow 1 mark for correct transformation

Q11.
(a) (i) 3
(ii) 30000 or $10000 \times$ their (a)(i) correctly calculated
(iii) any two from:

- frequency is above $20000(\mathrm{~Hz})$
accept the frequency is 30000
- frequency is above the upper limit of audible range
- upper limit of audible range equals $\underline{20} 000(\mathrm{~Hz})$ ignore reference to lower limit
- it is ultrasound/ultrasonic
(b) (i) wave (partially) reflected
at crack to produce \mathbf{A} and end of bolt to produce \mathbf{B} accept at both ends of the crack
(ii) $0.075(\mathrm{~m})$ allow 2 marks for time $=0.0000125$ allow 1 mark for time $=0.000025$ answers 0.15 or 0.015 or 0.09 gain 2 marks answers 0.18 or 0.03 gain 1 mark the unit is not required but if given must be consistent with numerical answer for the available marks

Q12.
(a) an alternating current through the primary coil (in the charging base) it must be clear which coil is being referred to
causes a changing / alternating magnetic field in / around the (iron) bar
which induces an (alternating) p.d. across the secondary coil (in the toothbrush)
accept induces an (alternating) current in the secondary coil
(b) 18

$$
\begin{aligned}
& \text { allow } 1 \text { mark for correct substitution, ie } \\
& \frac{230}{7.2}=\frac{575}{\mathrm{n}_{\mathrm{s}}}
\end{aligned}
$$

Q13.

(a) It is easily magnetised.
(b) p.d. across the secondary coil is smaller (than p.d. across the primary coil)
(c) ratio $\underline{\mathrm{V}}_{\mathrm{p}}=\underline{6}$
$V_{\mathrm{s}} \quad 12$
accept any other correct ratio taken from the graph
$\underline{6}=\underline{50}$
$12 \mathrm{~N}_{\mathrm{p}}$
use of the correct turns ratio and substitution or correct transformation and substitution
$N_{p}=100$
allow 100 with no working shown for 3 marks

Q14.
(a) any three from:

- red-shift shows galaxies are moving away (from each other / the Earth)
- more distant galaxies show bigger red-shift

or

more distant galaxies show a greater increase in wavelength accept correct reference to frequency in place of wavelength

- (in all directions) more distant galaxies are moving away faster accept (suggests) universe is expanding
- suggests single point of origin (of the universe)
(b) (i) (radiation produced shortly after) 'Big Bang’ accept beginning of time / beginning of the universe for 'Big Bang'
(ii) any one from:
- can only be explained by 'Big Bang'
- existence predicted by 'Big Bang'
- provides (further) evidence for 'Big Bang' ignore proves 'Big Bang' (theory) ignore reference to red-shift
(iii) increase
accept becomes radio waves
universe continues to accelerate outwards accept as universe continues to expand or
greater red-shift

Q15.

(a) (i) 20

20000
either order
accept ringed answers in box
(iii) any one from:

- pre-natal scanning accept any other appropriate scanning use
do not accept pregnancy testing
- removal / destruction of kidney / gall stones
- repair of damaged tissue / muscle
accept examples of repair, eg alleviating bruising, repair scar damage, ligament / tendon damage, joint inflammation accept physiotherapy accept curing prostate cancer or killing prostate cancer cells
- removing plaque from teeth cleaning teeth is insufficient
(b) $7.5 \times 10^{-4}(\mathrm{~m})$

$$
1.5 \times 10^{3}=2.0 \times 10^{6} \times \lambda \text { gains } 1 \text { mark }
$$

(c) for reflected waves
must be clear whether referring to emitted or detected / reflected waves
if not specified assume it refers to reflected wave any two from:

- frequency decreased
- wavelength increased
- intensity has decreased
allow amplitude / energy has decreased allow the beam is weaker

Q16.
(i) 0.5
(ii) wave speed $=$ frequency \times wavelength

$$
\text { accept } v=f \times \lambda
$$

accept s for v
accept $\mathrm{m} / \mathrm{s}=\mathrm{Hz} \times \mathrm{m}$
accept

providing subsequent method correct
(iii) 15.2 km
both numerical answer and unit are required for both marks numerical answer and unit must be consistent
allow 1 mark for 15.2 with incorrect or no unit
allow 2 marks for an answer of 1.52 km if the answer to
(b)(i) was given as 5
r 1 mark for correct transformation
or 1 mark for correct use of speed = distance/time

Q17.
(a) wavelength correctly shown
(b) (i) increased
decreased
(ii) 17-18 inclusive
evidence of measurement divided by 3 or mean of 3 separate measurements
mm
accept cm if consistent with answer
(c) (i) red shift
(ii) moving away
(iii) the furthest galaxies show the biggest red shift
(meaning that) the furthest galaxies are moving fastest
(so the) Universe is expanding
(extrapolating backwards this suggests that) the Universe started from an initial point
(iv) cosmic microwave background radiation allow CMBR

