| 4.6 The rate and extent of chemical change<br>Topic 6 – Paper 2                                                                                                                                                                                                                            | Factors that affect Rate o<br>Reaction                                                                                                                                   | f The higher                                                                                            | r the The faster th                                                                                                                                                                                                                                                                                                                                                                                     | he rate of reaction because                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mean rate of reaction = quantity of reactant used<br>time taken• Concentrations of reactant<br>• Pressure of reacting gases<br>• Surface area of solid<br>reactants<br>• Temperature<br>• CatalystUnits of rate of reaction - g/s or cm3 /s or mol/s (HT).• Concentrations of reactant<br> |                                                                                                                                                                          | reactants More part<br>ng gases Particles a<br>lid Small part<br>frequency<br>Particles c<br>Provides a | More particles in the same volume, increased frequency of collisions.<br>Particles are closer together so there is an increased frequency of collisions.<br>Small particles have a larger surface area to volume ratio, so increased<br>frequency of collisions.<br>Particles collide more energetically and more frequently.<br>Provides an alternative pathway which is at a lower activation energy. |                                                                                                                                                                                                                                                                                                               |
| <ul> <li>Make sure you include the units of rate, usually g/s, cm<sup>3</sup>/s or mol/s.</li> <li>0.9</li> <li>0.8</li> <li>0.7</li> </ul>                                                                                                                                                | gas syringe<br>conical flask<br>reaction mixture                                                                                                                         | time                                                                                                    | Activation Energy<br>Collision Theory<br>Reversible<br>reaction                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Minimum amount of energy required for particles to react when they collide.</li> <li>Chemical reactions can occur only when reacting particles collide with each other and with sufficient energy.</li> <li>A reaction that can turn reactants into products and products into reactants.</li> </ul> |
| 0.6<br>0.5<br>0.5<br>0.4<br>0.3<br>0.2<br>0.1<br>00s<br>(opposite<br>side to a)<br>0.2<br>0.1                                                                                                                                                                                              | Ight transmitted                                                                                                                                                         | ction fastest<br>eepest slope)<br>reaction<br>finished<br>time                                          | Equilibrium<br>Closed System<br>Precipitate<br>Enzymes                                                                                                                                                                                                                                                                                                                                                  | Forward and backward reaction happen at the<br>same time and rate in a closed system.<br>Products/reactants cannot get in or out<br>A solid is formed from 2 solutions<br>Biological catalysts                                                                                                                |
| $0 \frac{50  100  150}{\text{time in s}}$ Rate at $50 \text{ s} = \frac{0.7 \text{ g}}{100 \text{ s}} = 0.007 \text{ g/s}$ (The gradient is the tangent of angle <i>a</i> in the right-angled triangle, i.e. opposite side divided by adjacent side.)                                      | marble chips and<br>hydrochloric acid<br>top-pan<br>balance                                                                                                              | time                                                                                                    | Investigate the co<br>CaCO <sub>3</sub> (s) + 2HCl(a<br>The reaction bet<br>hydrochloric acid                                                                                                                                                                                                                                                                                                           | oncentration of HCl with marble chips<br>aq) -> CaCl <sub>2</sub> (aq) + CO <sub>2</sub> (g) + H <sub>2</sub> O(l)<br>ween sodium thiosulphate and dilute<br>I: (Precipitate)<br>$HCl(aq) \rightarrow 2NaCl(aq) + SO2(aq) + S(s) + H2O(l)$                                                                    |
| Energy<br>Reactants<br>Products<br>Products                                                                                                                                                                                                                                                | Advantages of Catalysts<br>Increases rate of reaction<br>Provides and alternative pathway<br>at a lover activation energy<br>Reduces energy cost for heating<br>Reusable | Disadvantages of<br>Catalysts<br>Specific Expensive?<br>Toxic?<br>Separation stage<br>Clean up          | The reaction betwee<br>Mg(s) + 2HCl(aq) $\rightarrow$<br>The decomposition<br>2H <sub>2</sub> O <sub>2</sub> (I) $\rightarrow$ 2H <sub>2</sub> O(I)                                                                                                                                                                                                                                                     | <ul> <li>een hydrochloric acid and magnesium:</li> <li>MgCl<sub>2</sub>(aq) + H<sub>2</sub>(g)</li> <li>n of hydrogen peroxide (usually for the catalyst):</li> <li>+ O<sub>2</sub>(g)</li> </ul>                                                                                                             |

4.6 The rate and extent of chemical change Topic 6 – Paper 2

## Le Chatelier's Principle

ammonium chloride

hydrated

The direction of reversible reactions can be changed by change conditions.

⇒ ammonia + hydrogen chloride

iodi

IC

monocl

(brown

anhydrous



heat

= cool

In a reversible reaction one is exothermic and one is endothermic.

The amount of energy transferred to the surroundings in the exothermic reaction is exactly the same amount of energy taken in in the endothermic reaction.

|                                                               | Effect of conditions on equilibrium                                                                     |                                                                                           |                                                                |  |  |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|
| ging the                                                      | Temperature                                                                                             | Increase                                                                                  | Decrease                                                       |  |  |
|                                                               | Change in<br>equilibrium                                                                                | The equilibrium shifts in the endothermic direction                                       | The equilibrium shifts in the exothermic direction             |  |  |
|                                                               | Pressure                                                                                                | Increase                                                                                  | Decrease                                                       |  |  |
|                                                               | Change in<br>equilibrium                                                                                | The equilibrium shifts to the side with least moles                                       | The equilibrium shifts to side with more moles                 |  |  |
|                                                               | Concentration                                                                                           | Increase                                                                                  | Decrease                                                       |  |  |
|                                                               | Change in<br>equilibrium                                                                                | Removes the substance that<br>you've added, moving the<br>equilibrium in the opposite way | Increases the yield of the substance you've removed            |  |  |
|                                                               | Catalyst                                                                                                | Present                                                                                   | Not Present                                                    |  |  |
|                                                               | Change in<br>equilibrium                                                                                | No effect—however, will make it so the rate to reach equilibrium is faster                |                                                                |  |  |
| ne<br>Iloride cl<br>(1 +<br>liquid)<br>remove<br>chlorine gas | with<br>plenty of<br>chlorine gas<br>hlorine trichloride<br>$Cl_2 \leftarrow ICl_3$<br>(yellow crystal) | rate of reaction                                                                          | forward reaction<br>equilibrium is<br>reached at<br>this point |  |  |
|                                                               |                                                                                                         | tt                                                                                        | ime                                                            |  |  |

A reaction reaches equilibrium when the rate of the forward and backward reaction are at the same (constant) rate.