

CHEMISTRY KNOWLEDGE ORGANISERS

	Central nucleus	Contains protons and neutrons
*	Electron shells	Contains electrons

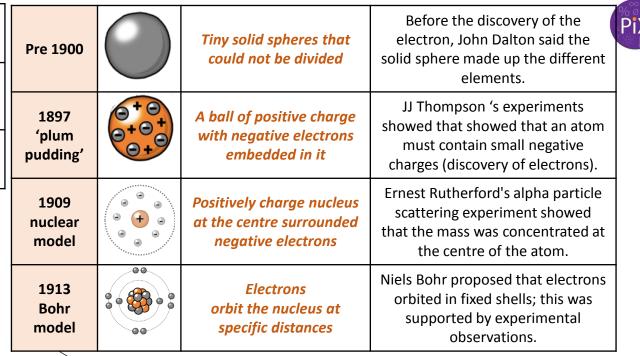
Name of Particle	Relative Charge	Relative Mass
Proton	+1	1
Neutron	0	1
Electron	-1	Very small

elements and

Atoms,

Electronic shell	Max number of electrons
1	2
2	8
3	8
4	2

Relative electrical charges of subatomic particles


7	Mass number	•	ons and neutrons in the ucleus
Li 3◀	Atomic number	The number of protons in the atom	Number of electrons = number of protons

Two or more elements or compounds **Mixtures** not chemically combined together

Can be separated by physical processes.

Electronic structures

Method	Description	Example			
Filtration	Separating an insoluble solid from a liquid	To get sand from a mixture of sand, salt and water.			
Crystallisation	To separate a solid from a solution	To obtain pure crystals of sodium chloride from salt water.			
Simple distillation	To separate a solvent from a solution	To get pure water from salt water.			
Fractional distillation	Separating a mixture of liquids each with different boiling points	To separate the different compounds in crude oil.			
Chromatography	Separating substances that move at different rates through a medium	To separate out the dyes in food colouring.			

The development of the model of the atom

James Chadwick

Provided the evidence to show the existence of neutrons within the nucleus

AQA GCSE Atomic structure and periodic table part 1

A beam of alpha particles are Rutherford's scattering directed at a very thin gold foil experiment

Most of the alpha particles passed right through. A few (+) alpha particles were deflected by the positive nucleus. A tiny number of particles reflected back from the nucleus.

Chemical equations

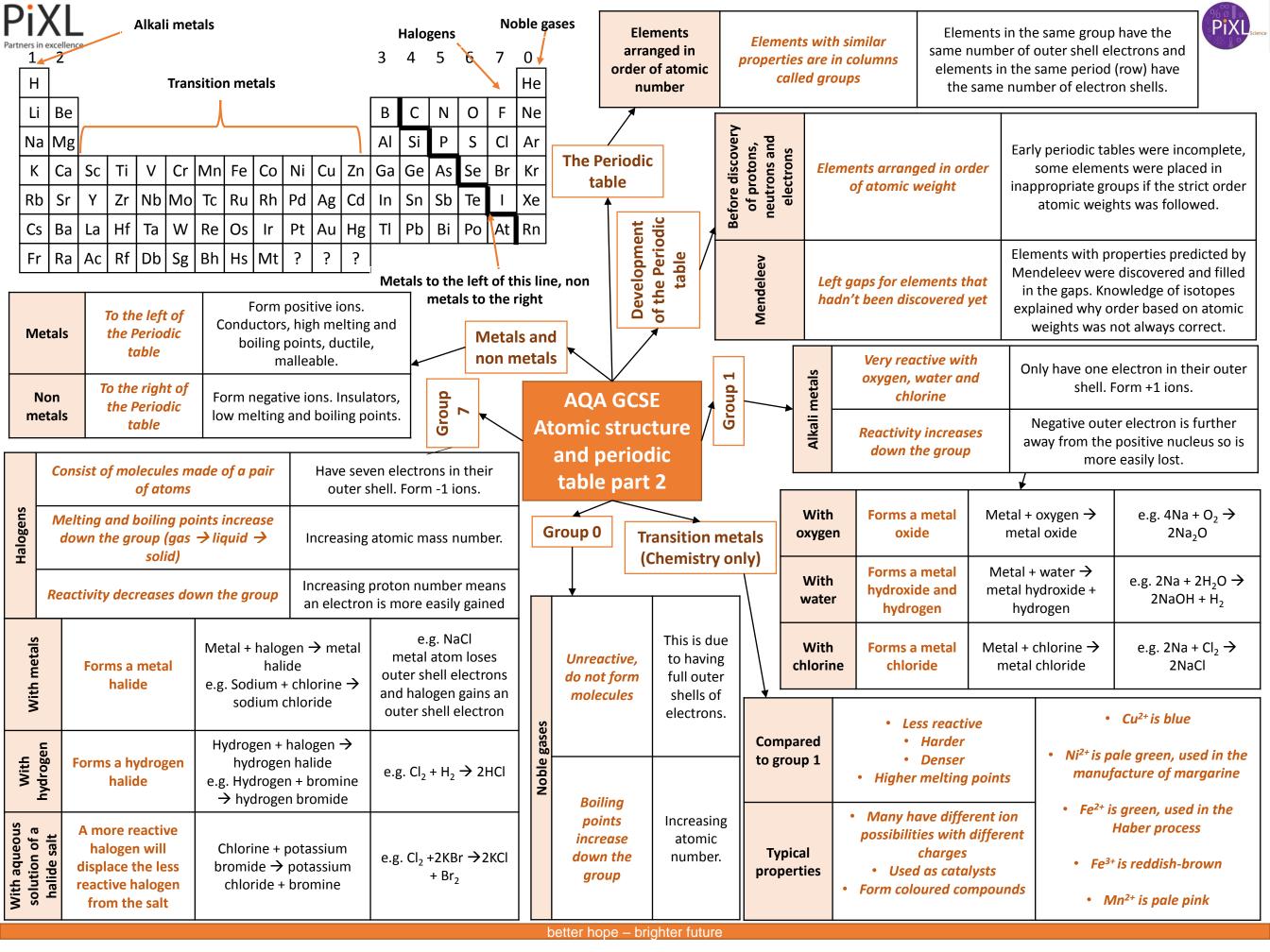
Show chemical reactions - need reactant(s) and product(s) energy always involves and energy change

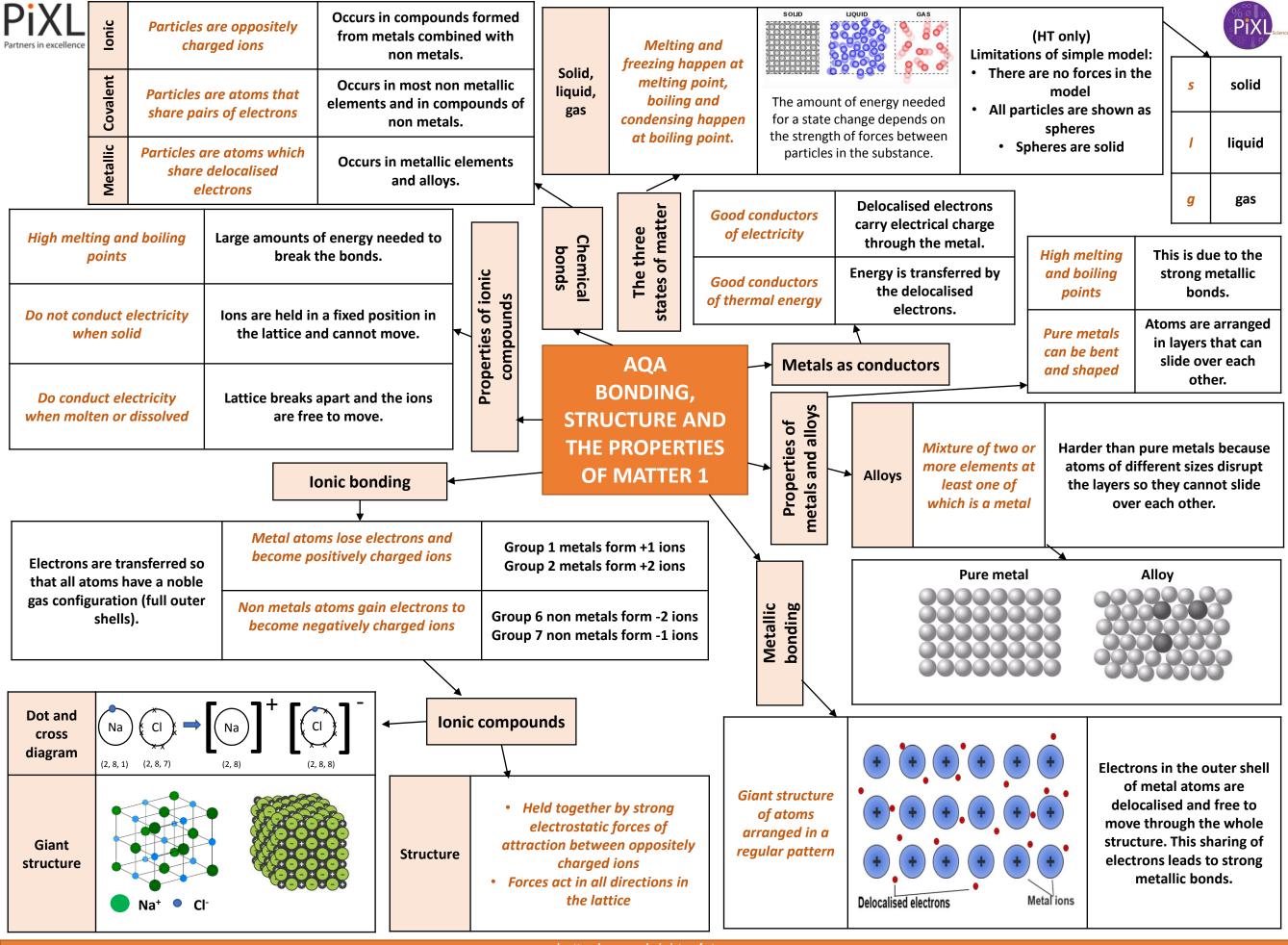
Uses words to show reaction

Law of conservation of mass states the total mass of products = the total mass of reactants.

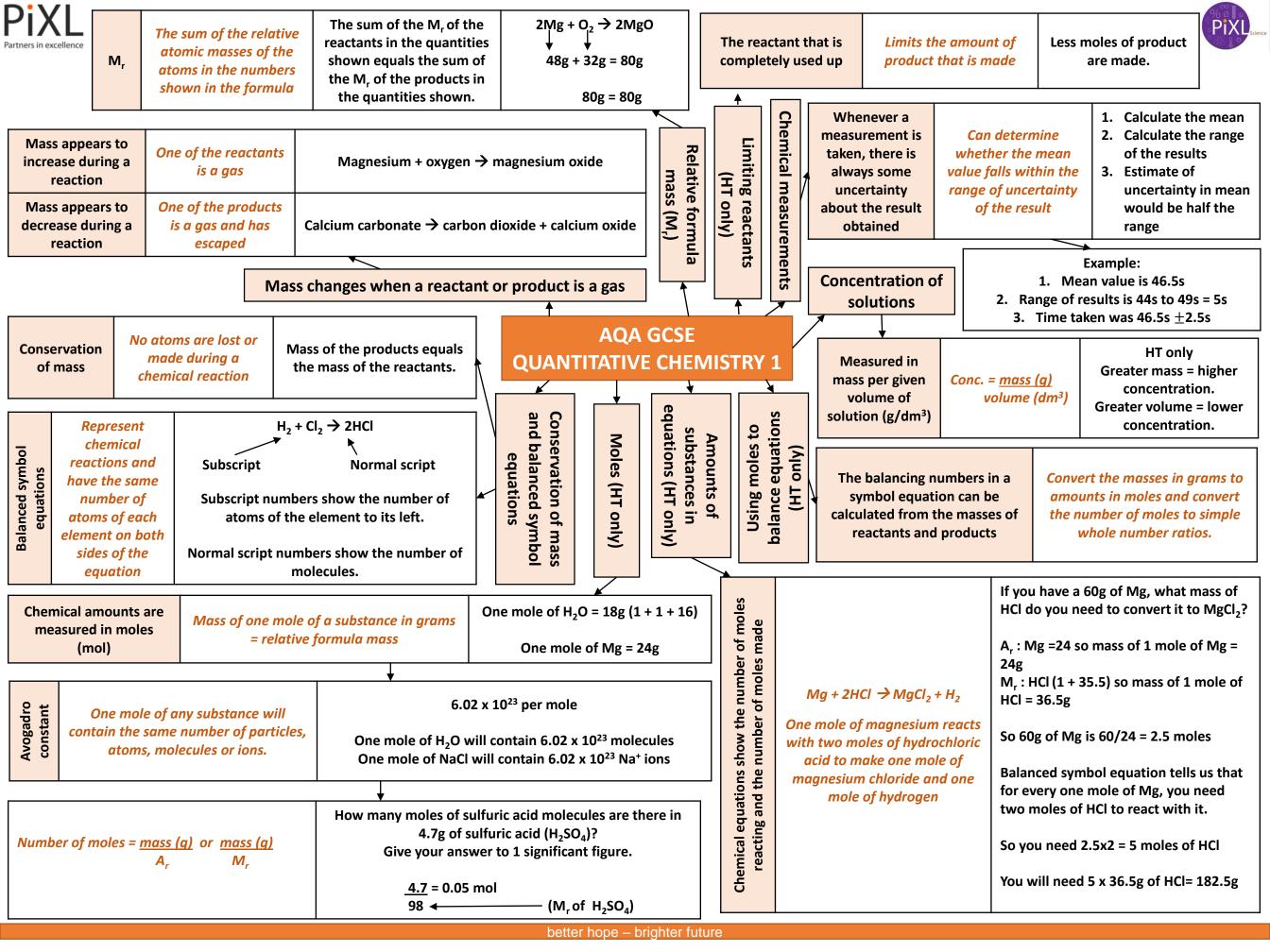
Does not show what is happening to the atoms or the number of atoms.

Shows the number of atoms and


	•	_	Vord uations	n	reactants → production production reactants → production reactants → magnes	
	•	•	mbol uations		Uses symbols to show reactants → production 2Mg + O ₂ → 2MgO	
	lass				Atoms of the same element	³⁵ C
	lsotopes		es	with the same number of protons and different	(% isoto _l	
1	ator				numbers of neutrons	e.g. (2


molecules in the reaction, these need to be balanced.

³⁵Cl (75%) and ³⁷Cl (25%)


Relative abundance = (% isotope 1 x mass isotope 1) + (% isotope 2 x mass isotope 2) ÷ 100 e.g. $(25 \times 37) + (75 \times 35) \div 100 = 35.5$

Relative

Partne	X L rs in excellence						1	•	<u> </u>		Very hai	d.	Rig	gid structure.	PIXL
	ery large	Solids o	l <u>-</u>		H H C=C	(H H \ +Ç-Ç-	Each carl atom is bo to four ot	nded		\	Very high melti	ng point.	Strong	covalent bonds.	
m	olecules	temperat	1 .		н н	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					Does not co electrici		No delo	ocalised electrons.	
liquids	Covale	nt bonds	Low melting and boiling points.	inter forces	having weak rmolecular s that easily proken.	Polym	ers Di	iamond	ant covalent structures	gra	Diamond, aphite, silicon dioxide	Very high	_	Lots of energy neede strong, covalent b	
gases or	are str forces l mole	nolecule ong but between ecules olecular)	Do not conduct electricity.	mole having electr	e to them ecules not g an overall cical charge. cmolecular ncrease with size of the	BON AN	NDING, ST D THE PRO OF MATI		. . .			H	N H	Dot and cross: + Show which atom electrons in the bo	onds come
Usually	are	weak	Larger molecules have higher melting and boiling points.	forces i	molecular ncrease with size of the olecules.	pr	-	les and their emistry only)	Covalent	of electrons	Can be smo	1 11 11 1		- All electrons are id D with bonds: Show which atoms a	
ane			Excellent conductor.	Contain delocalis electron	sed o	/ 5	Between 1 and nanometres (n size	m) in $= 1 \times 10^{-5}$ (0.000 000)	9 metres 001m or a	pairs	e.g. ammoi		н -	It shows the H-C-H b incorrectly at 90°	ond
Graphene	graph	layer of nite one n thick	Very strong.	Contain strong covalen bonds.	ne an en	Na	Use of n	billionth of anoparticles	f a metre).	Atoms share			+	D ball and stick mode Attempts to show the ond angle is 109.5°	
						Hooli	thcare,								
Fullerenes			Buckminsterful C ₆₀ First fullerene		Hexagonal rings of carbon atoms with hollow shapes. Can also have rings of five	cosn sun c cata deod	netics, Na cream, pe	noparticles may be cople. They may be enter the brain from oodstream and caus	able to m the		Can be gia covalent structures e.g. polyme	s	-	$\begin{pmatrix} H & H \\ -C & -C \\ H & H \end{pmatrix}_n$	
Fu			discovered	d.	(pentagonal) or seven (heptagonal) carbon atoms.								Graphit	e	
				<u></u>		<u> </u>		Each carbon atom				Sli	ppery.	Layers can slide o	
tubes		TOWN			ry conductive.		electronics ustry.	bonded to three others forming	5			Very hi	igh melting		
nano			Very thin and long	High	tensile strength.	1	forcing e materials.	layers of hexagon rings with no				=	ooint.	Strong covalent	t bonds.
Carbon nanotubes		A.C.	cylindrical fullerenes	1 -	e surface area to olume ratio.	Cataly	ysts and icants.	covalent bonds between the laye	-	X			conduct	Delocalised ele between la	
							better ho	ope – brighter futur	е						

A measure of the amount of starting materials that end up as useful products

Atom economy = Relative formula mass of desired product from equation x 100

Sum of relative formula mass of all reactants from equation

High atom economy is important or sustainable development and economic reasons

Calculate the atom economy for making hydrogen by reacting zinc with hydrochloric acid:

$$Zn + 2HCl \rightarrow ZnCl_2 + H_2$$

$$M_r$$
 of $H_2 = 1 + 1 = 2$
 M_r of $Zn + 2HCl = 65 + 1 + 1 + 35.5 + 35.5 = 138$

Atom economy =
$$\frac{2}{138} \times 100$$

= $\frac{2}{138} \times 100 = 1.45\%$

This method is unlikely to be chosen as it has a low atom economy.

Concentration of a solution is the amount of solute per volume of solution

Concentration = $\frac{amount (mol)}{(mol/dm^3)}$ volume $\frac{(dm^3)}{(dm^3)}$

What is the concentration of a solution that has 35.0g of solute in 0.5dm³ of solution?

$$35/0.5 = 70 \text{ g/dm}^3$$

Using concentrations of solutions in mol/dm³ (HT only, chemistry only)

Atom economy

AQA
QUANTITATIVE
CHEMISTRY 2

Percentage

yield

If the volumes of two solutions that react completely are known and the concentrations of one solution is known, the concentration of the other solution

can be calculated.

 $2NaOH(aq) + H_2SO_4(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(l)$

It takes 12.20cm³ of sulfuric acid to neutralise 24.00cm³ of sodium hydroxide solution, which has a concentration of 0.50mol/dm³.

Calculate the concentration of the sulfuric acid in mol/dm³:

0.5 mol/dm³ x (24/1000) dm³ = 0.012 mol of NaOH The equation shows that 2 mol of NaOH reacts with 1 mol of H_2SO_4 , so the number of moles in 12.20cm³ of sulfuric acid is (0.012/2) = 0.006 mol of sulfuric acid

Calculate the concentration of sulfuric acid in mol/ dm³ 0.006 mol x (1000/12.2) dm³=0.49mol/dm³

HT only:

200g of calcium carbonate is heated. It decomposes to make calcium oxide and carbon dioxide. *Calculate the theoretical mass of calcium oxide made.*

$$CaCO_3 \rightarrow CaO + CO_2$$
 M_r of $CaCO_3 = 40 + 12 + (16x3) = 100$
 M_r of $CaO = 40 + 16 = 56$
 $100g$ of $CaCO_3$ would make 56 g of CaO

So 200g would make 112g

Use of amount of substance in relation to volumes of gases (HT only, chemistry only)

Calculate the concentration of sulfuric acid in g/dm³: $H_2SO_4 = (2x1) + 32 + (4x16) = 98g$ $0.49 \times 98g = 48.2g/dm³$

Yield is the amount of product obtained

It is not always
possible to obtain
the calculated
amount of a
product

The reaction may not go to completion because it is reversible.

Some of the product may be lost when it is separated from the reaction mixture.

Some of the reactants may react in ways different to the expected reaction.

Equal amounts of moles or gases occupy the same volume under the same conditions of temperature and pressure

The volume of one mole of any gas at room temperature and pressure (20°C and 1 atmospheric pressure) is 24 dm³

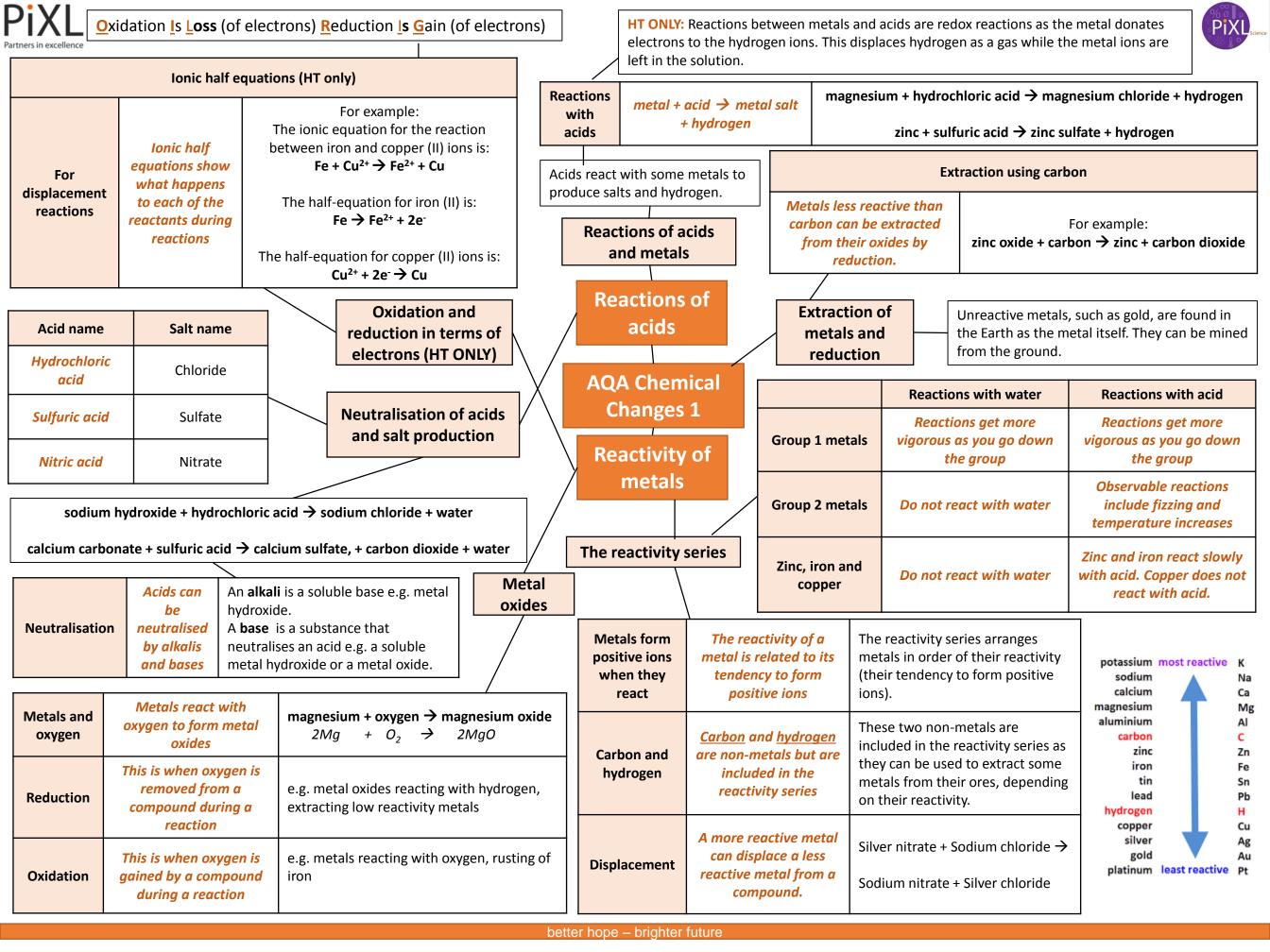
No. of moles of gas = $\underline{\text{vol of gas (dm}^3)}$ 24dm³

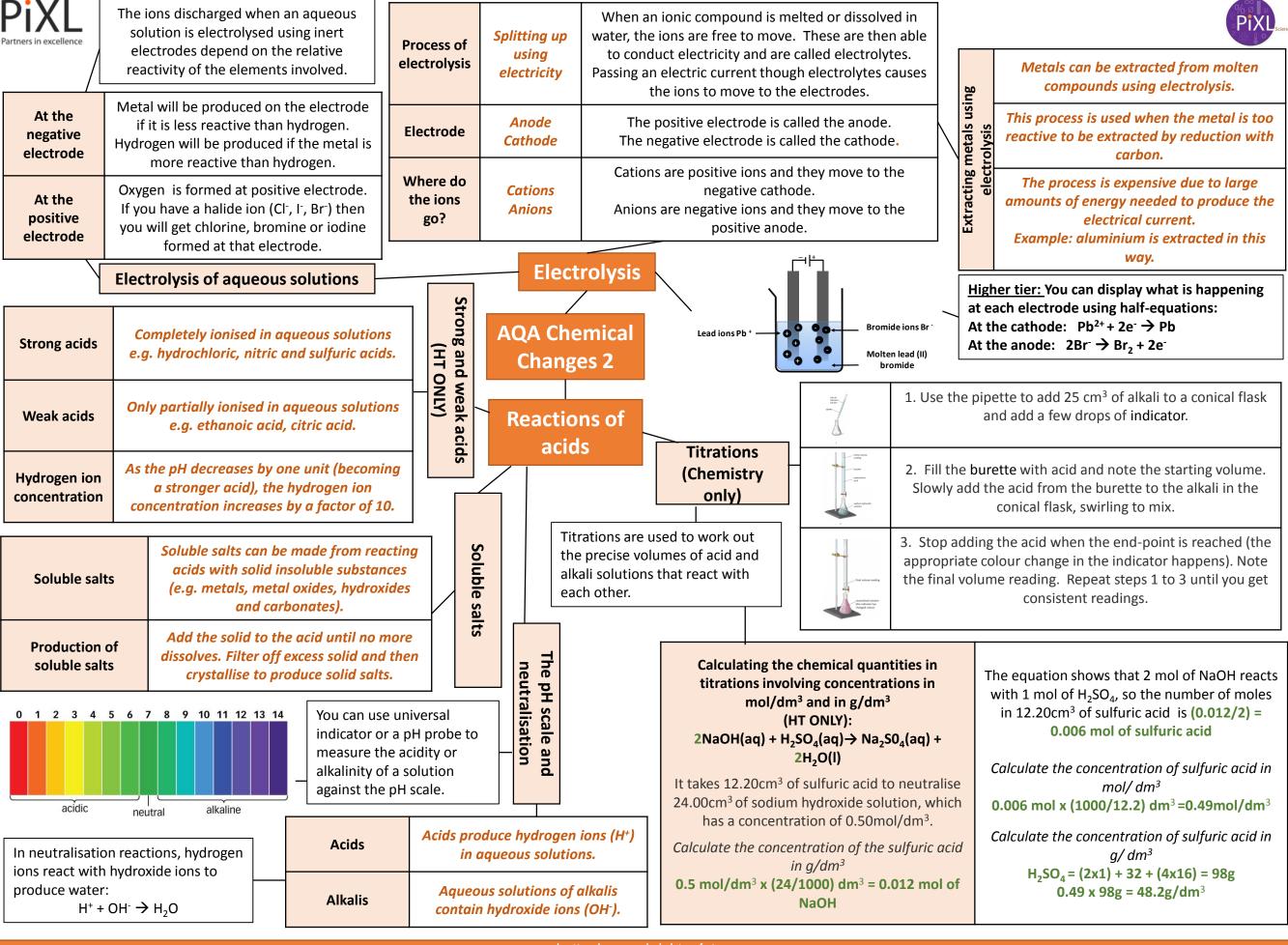
Percentage yield is comparing the amount of product obtained as a percentage of the maximum theoretical amount

% Yield = <u>Mass of product made</u> x 100 Max. theoretical mass A piece of sodium metal is heated in chlorine gas. A maximum theoretical mass of 10g for sodium chloride was calculated, but the actual yield was only 8g.

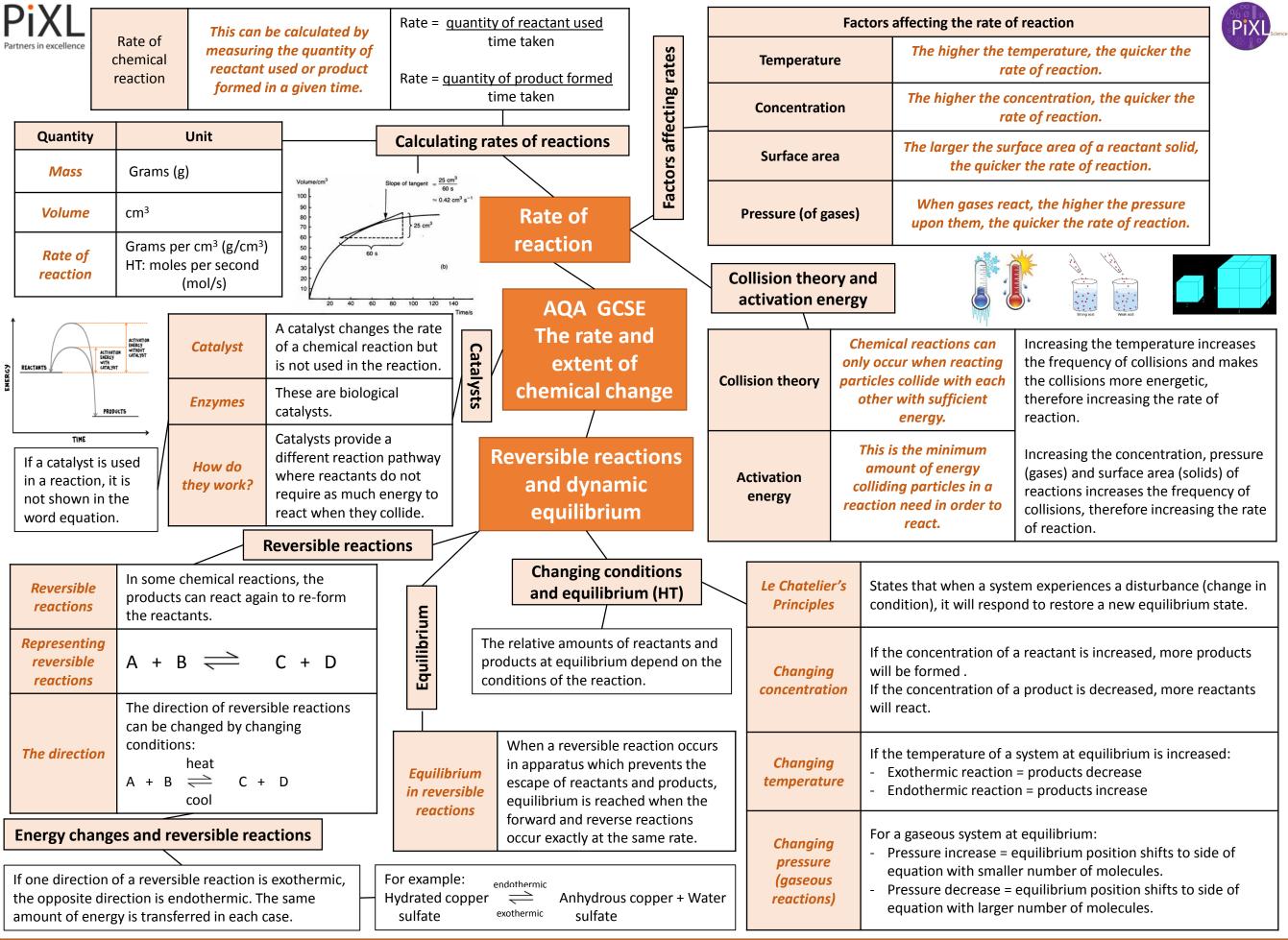
Calculate the percentage yield.

Percentage yield = 8/10 x 100 =80%


What is the volume of 11.6 g of butane (C_4H_{10}) gas at RTP?


$$M_r$$
: $(4 \times 12) + (10 \times 1) = 58$

Volume =
$$0.20 \times 24 = 4.8 \text{ dm}^3$$


6g of a hydrocarbon gas had a volume of 4.8 dm³. Calculate its molecular mass.

$$M_r = 6 / 0.2 = 30$$

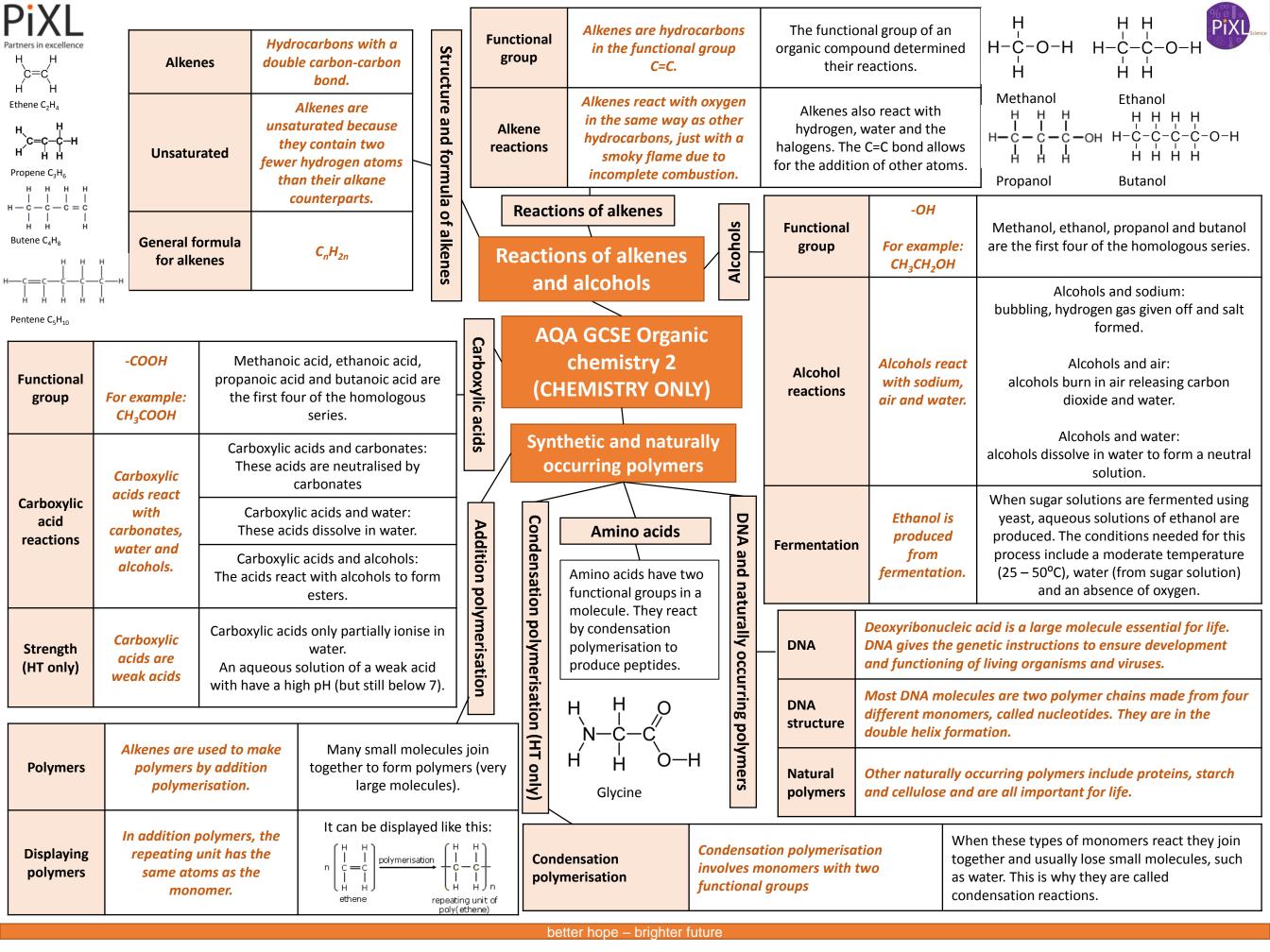
Partners in exc	rellence	Endothe	rmic	Energy is taken in from t surroundings so the temperature of the surroundings decrease		•	Thermal dec • Sports inju	-	Negative electrode: 2H₂ (g) + 4OH⁻ (aq) → 4H₂O (l) + 4e⁻					+ 4e ⁻	Positive electrode: O ₂ (g) + 2H ₂ O (l) + 4e ⁻ → 4OH ⁻ (aq)			PIXL	
	-	Exother	mic	Energy is transferred to to surroundings so the temperature of the surroundings increases		• Combustion • Hand warmers • Neutralisation				en fuel cells	Word equation: hydrogen + oxygen → water				er	Symbol equation: $2H_2 + O_2 \rightarrow 2H_2O$			
	oction ofiles	Show	the ove	erall energy change of a reaction			Types			Hydrogen	-	lutants a rang	produce of size	ced es		• Hydro	gen is hig	dvantages: thly flammable ficult to store	
		nds in reac		Endothermic process Exothermic process		chan react	nergy ge of tions only)	AQA Energy				eaction (n	Activation energy Manage M		nical reaction	-	The minimum of energy that particles must	colliding
energy change a reaction	Exo	thermic	bo	rgy released making new onds is greater than the tergy taken in breaking existing bonds.				Cells and b] 			Activatio	colli	ide with suffi energy	icient	order to react the activation	is called
Overall ene	Endo	othermic	bo	y needed to break existing ands is greater than the rgy released making new bonds.		Simple of m	Make a simple onnecting two etals in conta electroly	o different ct with an vte	volt increa rea	ease the tage by asing the	e			Activation			Products are at a higher en level than the reactants. As reactants form products, en is transferred from the		s. As the s, energy
	Cal	1	orward	energy change for the I reaction 2 ⇌ 2NH ₃	L	Batterie	Consist of two ells connected in series to pr greater vol	together rovide a	betw	ference veen the metals.	0	Ener	Reactar Time	nts		Products —	surro mixture surrour	undings to the re e. The temperatu ndings decreases gy is taken in duri reaction.	eaction re of the because
Bond energy calculation			N≡r : 945 + (mol): H-H 436, H-N 391, N 945 (3 x 436) = 945 + 1308 =		Non-rechargeable cells	Stop when reactants used	has been		alkaline atteries						ctivation energy	level th	cts are at a lower nan the reactants eactants form pro	s. When
Bond ene	Overa	ll energy c	ing: 6 x hange =	kJ/mol 391 = 2346 kJ/mol = 2253 - 2346 = -93kJ/mol		Rechargeable cells				Rechargeable batteries		Energy	Reactants			energy is transferred surroundings. The tem of the surroundings is reducts because energy is reducting the reacti		ndings. The temp surroundings inc use energy is rel	perature creases eased
	Th	erefore re	action i	s exothermic overall.		Rec	supp	better hope	e – brig	ghter futu	ure			Time					

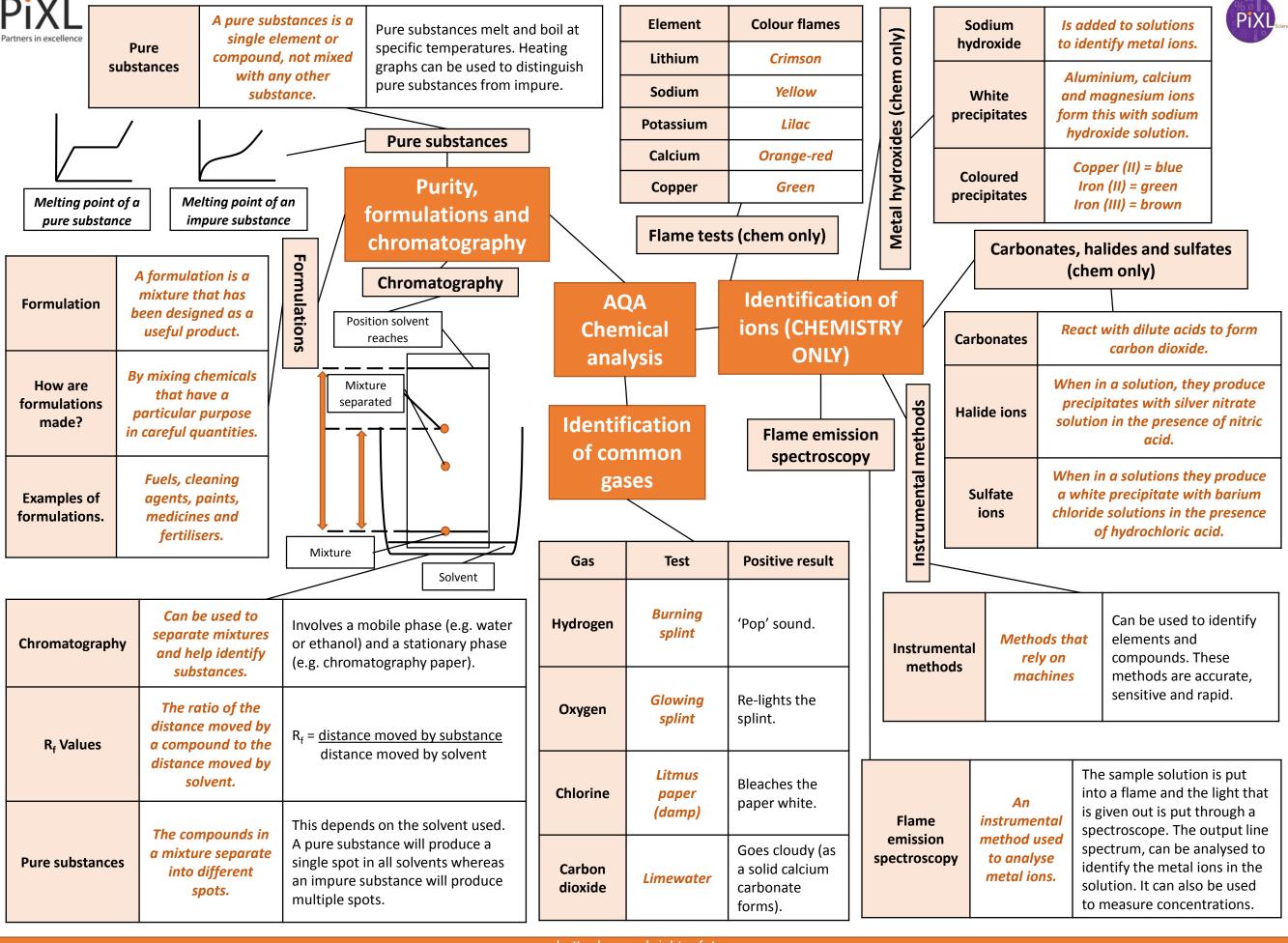
PiXI					Display fo	ormula for	first four alkanes	Пг			Each fraction	contains	PIXL Science	
Partners in excellence Crude oil	A finite resource	Consisting mainly o plankton that was k in the mud, crude o the remains of anci	uried il is	Crude oil, hydrocarbons and alkanes	H H—C— H Methane		H H H—C—C—H H H Ethane (C ₂ H ₆)		Fractions	The hydrocarbons in crude oil can be split into fractions	molecules wi	th a similar Irbon atoms in ocess used to	Science	
Hydrocarbons	These make up the majority of the compounds in crude oil	Most of these hydrocarbons are calkanes.	alled	irbons	H H I H-C-C-C H H I Propane	-C-H H (C ₃ H ₈)	H H H H H-C-C-C-C-C- H H H H H Butane (C ₄ H ₁₀)		Using fractions	Fractions can be processed to produce fuels and feedstock for petrochemical industry	made by the	etrol, diesel		
General formula for alkanes	<i>C_nH_{2n+2}</i>	For example: ${\rm C_2H_6}$ ${\rm C_6H_{14}}$			and	nd feedstock AQA GCSE				istillation and hemicals	and polymer	20 °C 150°C	Butane & Propane	
Alkanes to alkenes	_	are cracked into sho	rt		Carbon compounds as fuels and feedstock			oiling points In oil	in l	rbon chains in crude of lots of different length boiling point of the ch	as. Jain	<u>ጥ ጥ ጥ ጥ</u> Pe 200 °C <u>ጥ ጥ ጥ ጥ</u> Ke 300°C		
Alkenes	bond (some are	arbons with a double formed during the g process).						Boiling po	separate at different temperature due to this.		oil and Crude Oil	370 °C ፲ ፲ ፲ ፲ ፲ .	Diesel Fuel Oil	
Properties of alkenes	and react with bro water changes from	reactive that alkanes mine water. Bromine n orange to colourles nce of alkenes.		Cracki	ng and al	lkenes	Proper	hyd	drocarbons,	complete combustion the carbon and hydrog oxidised, releasing car	gen in heated	in a ce	Lubricating oil, Parrafin Wax, Asphalt	
Cracking	long cha hydrocarbor	The breaking down of long chain hydrocarbons into smaller chains The smaller chains are useful. Cracking can be various methods included catalytic cracking and starting cracking.			n be done by Decane → pentane + p				ine	Methane + oxyger	n -> carbon diox	e combustion of methane: \rightarrow carbon dioxide + water + energy $_2$ (g) \rightarrow CO ₂ (g) + 2 H ₂ O (I)		
Catalytic crackin	Catalytic cracking The heavy fraction is heated until vaporised After vaporisation, to passed over a hot cat forming smaller, more hydrocarbons.		atalyst	the vapour is atalyst Alkenes and uses st		They are also starting mater other chemic alcohol, pla	produce polymers. e also used as the materials of many hemicals, such as nol, plastics and		Boiling point (temperature at which liquid boils)) increases	ydrocarbon chair , boiling point in	ocreases.		
The heavy fraction is mixed with steam heated until vaporised smaller, more us		n steam a n tempera	detern, the vapour is and heated to erature forming detern which is a detern with the vapour is and heated to erature forming wasted as the detern wasted as the determinant wasted wasted wasted as the determinant wasted waste			Without cracking long hydrocarb wasted as there	g, mai	Wiscosity any of the would be			ydrocarbon chair es, viscosity incr ydrocarbon chair	reases.		

demand for these as for the

shorter chains.

chains?

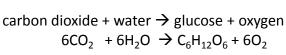

smaller, more useful


hydrocarbons.


vaporised

increases, flammability decreases.

(how easily it burns)


Gas	Percentage
Nitrogen	~80%
Oxygen	~20%
Argon	0.93%
Carbon dioxide	0.04%

Proportions of atmosphere gases in the

The

Earth's early atmosphere

 $6CO_{2} + 6H_{2}O \rightarrow C_{6}H_{12}O_{6} + 6O_{2}$

Oxygen in the First produced by algae 2.7 billion atmosphere years ago.

Over the next billion years plants evolved to gradually produce more oxygen. This gradually increased to a level that enabled animals to evolve.

	•	
Volcano activity 1 st Billion years	Billions of years ago there was intense volcanic activity	This released gases (mainly CO ₂) that formed to early atmosphere and water vapour that condensed to form the oceans.
Other gases	Released from volcanic eruptions	Nitrogen was also released, gradually building up in the atmosphere. Small proportions of ammonia and methane also produced.
Reducing carbon dioxide in the atmosphere	When the oceans formed, carbon dioxide dissolved into it	This formed carbonate precipitates, forming sediments. This reduced the levels of carbon dioxide in the atmosphere.

Atmospheric pollutants from fuels

How carbon dioxide decreased

How oxygen increased

Composition and evolution of the atmosphere

AQA GCSE Chemistry of the atmosphere

Common

atmospheric

pollutants

CO₂ and methane as greenhouse gases

Reducing carbon

dioxide in the

atmosphere

Formation of

sedimentary rocks

and fossil fuels

Carbon footprints

The total amount of greenhouse gases emitted over the full life cycle of a product/event. This can be reduced by reducing emissions of carbon dioxide and methane.

Algae and plants

These are made out of the remains of biological matter, formed over millions of years

photosynthesis. Remains of biological matter falls to the bottom of oceans. Over millions of years layers of sediment settled on top of them and the huge pressures turned them into

These gradually reduced the carbon dioxide

levels in the atmosphere by absorbing it for

coal, oil, natural gas and sedimentary rocks. The sedimentary rocks contain carbon dioxide from the biological matter.

Greenhouse gases

Carbon dioxide, water vapour and methane

Examples of greenhouse gases that maintain temperatures on Earth in order to support life

The greenhouse effect

Global climate

change

Radiation from the Sun enters the Earth's atmosphere and reflects off of the Earth. Some of this radiation is re-radiated back by the atmosphere to the Earth, warming up the global temperature.

Human activities and greenhouse gases

Combustion of fuels	Source of atmospheric pollutants. Most fuels may also contain some sulfur.
Gases from burning fuels	Carbon dioxide, water vapour, carbon monoxide, sulfur dioxide and oxides of nitrogen.
Particulates	Solid particles and unburned hydrocarbons released when burning fuels.

Toxic, colourless and odourless Carbon monoxide gas. Not easily detected, can kill. Sulfur Cause respiratory problems in dioxide and humans and acid rain which oxides of affects the environment. nitrogen Cause global dimming and health

problems in humans.

Particulates

Properties and effects of

atmospheric pollutants

Effects of climate change Rising sea levels Extreme weather events such as severe storms Change in amount and distribution of rainfall Changes to distribution of wildlife species with some becoming extinct

Human activities that increase carbon Carbon dioxide levels include burning fossil fuels dioxide and deforestation. Human activities that increase methane levels include raising livestock (for food) Methane and using landfills (the decay of organic matter released methane). There is evidence to suggest that human Climate activities will cause the Earth's atmospheric temperature to increase and change

cause climate change.

PiXL Partners in excellence	e e				1	ing agents inc e, ozone and	l l		able ater	approp	ter of an riate quality ntial for life	low lev microb	els of dissol	ater should have lved salts and alled potable	PixL
Earth's warmth, shelte food and transp for humans		nth, shelter,	from agriculture provi food, clothing and fue	<u> </u>		Usin	water	UK	water	Rain pro	ovides water ow levels of	ground		in the rs. To make potable ate source is	ı
			Finite resources from the Earth, oceans and atmosphere are processed to provide energy and		sustainable development	Using the Earth's resources and	Potable			sub	ssolved stances to occur is	filter b	eds and the		ı
Chemistr and resource	and agricultural and products and im		These improvements products and improve	•		arth's arth s		Desal	inatio	n lim salty/s	water is ited and ea water is for drinking	by usin	This can be achieved by distillation or by using large membranes e.g. everse osmosis. These processes equire large amounts of energy.		ſ
	industrial processes			ever, the raw material ethene		sources a					Waste water treat		eatment		
Plastics Normally made using ethene from crude oil		can also be obtained from ethanol, which can be produced during fermentation. Industries are now starting to use a renewable crop for this process.			water Water A GCSE U	er	thods of	tals (HT)	Waste water	urban lifes and indus	urban lifestylesthand industrialo		nese require treatment before used in the environment. Sewage needs the rganic matter and harmful microbes emoved.		
LCAS	Life cycle assessments carried out assess th environme impact o	s are - Ex t to m ne - M ntal - U	are assessed at these sta extraction and processing ra aterials anufacturing and packaging se and operation during etime	erials ufacturing and packaging and operation during		Life cycling recycling	le t and	Alternative methods of	extracting metals	Sewage treatment		Includes many stages -		Screening and grit removal Sedimentation to produce sludge an effluent (liquid waste or sewage). Anaerobic digestion of sludge Aerobic biological treatment of effluent.	
Values	Allocatin numerical vo to polluta	ng alues Valuent the e	judgments are allocated to ects of pollutants so LCA is		Ways of reducing the			· ·	Me	etals ores	These resou		becom extract	Copper ores especially are becoming sparse. New ways of extracting copper from low-grade ores are being developed.	
		effects is difficult not a purely objective process. This therefore		use of resources re, reduces energy sources being				Phy	/tomining	Plants absorb metal compounds		and bu	These plants are then harvested and burned; their ash contains the metal compounds.		
		egy reduces the use of nited resources		s waste (landfill) and reduces						Bacteria is used to		I	The metal compounds can be processed to obtain the metal		
Limited raw materials materials,		metals, glass, building als, plastics and clay ceramics	comes from materials fro	limited reson the Eart	energy required for these processes imited resources. Obtaining raw m the Earth by quarrying and mining onmental impacts.			Bio	oleaching	produce le solutions the metal com	it contai	from it	from it e.g. copper can be obtained from its compounds by displacement or electrolysis.		
Reusing and recycling Metals can be recycled by melting melted to		Glass bottle melted to m	s can be reused. They are crushed and ake different glass products. Products be reused are recycled.												

PiXL									Alloys	A mixt	_					tal e.g. Bronze is an alloy of	
Partners in excellence	The destruction	of.]			Cold iowa	copper and tin and Brass is an alloy of copper and zinc.								
	materials by		example of this is iron rusting; iron cts with oxygen from the air to form			Corrosion	sli	700	carats	Gold jewellery is usually an alloy with silver, copper and zinc. The carat of the jewellery is a measure of the amount of gold in it e.g. 18 carat is 75% gold, 24 carat is 100% gold.							
Corrosion	chemical reaction with substances	iron o	iron oxide (rust) water needs to be			osior	teria			Alloys of iron, carbon and other metals.							
	nt for iron to rust.	n to rust.					ς <u> </u>	High carbon steel is strong but brittle.									
Coatings can be			ples of this are greasing, painting lectroplating. Aluminium has an			and its	useful materials		Steels	Low carbon steel is softer and easily shaped.							
corrosion added to metals to oxide		oxide	coating that protects the metal			prev	are us			Steel containing chromium and nickel (stainless) are hard and corrosion resista							
		from f	urther corrosion.	Steel containing chromium and nice straining will react Aluminium Ceramics,							n alloys	alloys are low density.					
Sacrificial corrosion	ial reactive metal is with t		neans that the coating will react he air and not the underlying . An example of this is zinc used to			ion	Alloys			Ceramics, polymers and composites					nosetting	polymers that do not melt when they are heated.	
	reactive metal		ise iron.				Jsing	m	/ L nateria)Sites	Po	olymers	Therm	osoftening	polymers that melt when they are heated.	
NPK fertilisers	These contain nitrogen, phosphorous and potassium					A	AQA GCSE Usi			Composite materials			_	Soda-lime glass, made by heating sand, sodic carbonate and limestone.			
	Potassium chloride,	Phosphate treated with produce a		ith an acid to		resor (CHEN							A mixtu materia togethei specific p	ls put r for a	Borosilicate glass, made from sand and boro trioxide, melts at higher temperatures than soda-lime glass. MDF wood (woodchips, shavings, sawdust a resin)		
Fertiliser examples	potassium sulfate and		which is then used as a fertiliser. Ammonia can be used to manufacture		es		The Haber and the NPK fert						e.g. strength				
Champles	phosphate rock are obtained	used to m			of NPK									٠	Concrete (cement, sand and gravel)		
	by mining	ammoniu acid.	m salts and nitric	NPK TETU				Ceramic materials		Made fro	m clay	furnace, co	aping wet clay and then heating in a mmon examples include pottery and				
			The Haber	orocess	– conditio	ons and	equili	briu	um	SS	materials				bricks.		
Phosphate rock The reactants sid					ide of tl	he eau	atio	on has		LOCE LOCE		Mar	ny		hese factors affect the properties of the polymer. Low density (LD) polymers and high		
Treatment	Products		more molecules			of gas.	of gas. This means th			Haber process	Polymers	S	monome make po			density (HD) polymers are produced from ethene. These are formed under different	
	The acid is neutralised with ammonia to produce ammonium phosphate, a NPK		Pressure	if pressure is increased, e shifts towards the prod			roduct	ction of		Hab			make po			conditions.	
Nitric acid			pressure nee			eds to b	atelier's principle). The ds to be as high as ossible.			The	The Haber process		Used to mo amm	-		nia is used to produce fertilisers n + hydrogen	
Sulfuric acid	superphosphate).			The forward reac Decreasing temp ammonia product		emperat luction	nperature incre ction at equilik		ases rium.		Raw materials		Nitrogen fr while hydr natur	ogen fro	ir being pa	these gases are purified before assed over an iron catalyst. This is ted under high temperature (about and pressure (about 200	
Phosphoric			Temnerature				reaction that occurs by to surrounding,								atmospheres).		

Catalyst

Iron

The catalyst speeds up **both** directions of

increasing the amount of valuable product.

the reaction, therefore not actually

releases energy to surrounding,

opposing the temperature decreases.

Too low though and collisions would be

too infrequent to be financially viable.

Phosphoric

acid

Calcium phosphate (a

triple superphosphate).