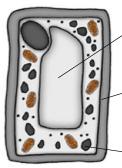


BIOLOGY KNOWLEDGE ORGANISERS

cell site of chemical gel like substance containing enzymes to catalyse the reactions membrane reactions in the cell bacterial not in nucleus floats controls the function of the cell DNA in the cytoplasm **NOT** made of cell wall supports and strengthens the cell cellulose small rings of DNA plasmid contain additional genes controls the movement of semi permeable cytoplasm substances in and out of the cell

Bacterial cells are much smaller than plant and animal cells

AQA Cell Structure


specialised animal cells

specialised plant cells

Specialised cells

Prokaryotes simpler organisms

absorb water

	permanent vacuole	contains cell sap	keeps cell turgid, contains sugars and salts in solution
_	cell wall	made of cellulose	supports and strengthens the cell
	chloroplast	site of photosynthesis	contains chlorophyll, absorbs light energy

plant cell differentiation

all stages of life cycle the

stem cells are grouped

together in meristems

how a cell changes and becomes **specialised Undifferentiated** call are called **STEM** cells

Cell differentiation

Microscopy

 $\label{eq:magnification M = size of image I} \underline{\qquad}$ real size of the object A

nerve	carry electrical signals	long branched connections and insulating sheath
sperm	fertilise an egg	streamlined with a long tail acrosome containing enzymes large number of mitochondria
muscle	contract to allow movement	contains a large number of mitochondria long

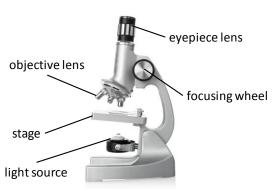
root hair

and minerals
from soil

carry water
and minerals

carry glucose

carry glucose


TRANSPIRATION - dead cells cell walls toughened by lignin flows in one direction

TRANSLOCATION - living cells cells have end plates with holes flows in both directions

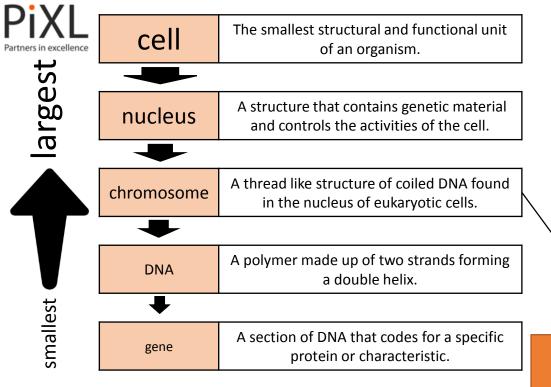
hair like projections to increase the

surface area

PiXL

animal cell differentiation

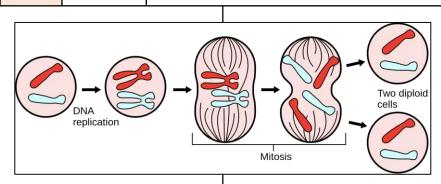
early stages of


development

only for repair and

replacement

Feature	Light (optical) microscope	Electron microscope
Radiation used	Light rays	Electron beams
Max magnification	~ 1500 times	~ 2 000 000 times
Resolution	200nm	0.2nm
Size of microscope	Small and portable	Very large and not portable
Cost	~£100 for a school one	Several £100,000 to £1 million plus


PREFIXES			
Prefix	Multiple	Standard form	
centi (cm)	1 cm = 0.01 m	x 10 ⁻²	
milli (mm)	1 mm = 0.001 m	x 10 ⁻³	
micro (μm)	1 μm = 0.000 001 m	x 10 ⁻⁶	
nano (nm)	1nm = 0.000 000 001 m	x 10 ⁻⁹	

Cells divide in a series of stages. The genetic material is doubled and then divided into two identical cells.

MITOSIS AND THE CELL CYCLE

Stage 1	Growth	Increase the number of sub-cellular structures e.g. ribosomes and mitochondria.
Stage 2	DNA Synthesis	DNA replicates to form two copies of each chromosome.
Stage 3	Mitosis	One set of chromosomes is pulled to each end of the cell and the nucleus divides. Then the cytoplasm and cell membranes divide to form two cells that are identical to the parent cell.

Mitosis occurs during growth, repair, replacement of cells. Asexual reproduction occurs by mitosis in both plants & simple animals.

Small intestines	Villi – increase surface area, Good blood supply – to maintain concentration gradient, Thin membranes – short diffusion distance.
Lungs	Alveoli– increase surface area, Good blood supply – to maintain concentration gradient, Thin membranes – short diffusion distance.
Gills in fish Gills in fish Gill filaments and lamella – increase surface area, Good blood supmaintain concentration gradient, Thin membranes – short diffusion	
Roots	Root hair cells - increase surface area.
Leaves	Large surface area, thin leaves for short diffusion path, stomata on the lower surface to let O_2 and CO_2 in and out.

ADAPTATIONS FOR DIFFUSSION

The greater the difference in concentrations the faster the rate of diffusion.

PiXL

Cell Biology 2		
Cell division		
STEM CELLS	2	
Undifferentiated cell of an organism	2	
	9	ĺ

AQA

Divides to form more cells of the same type, and can differentiate to form many other cell types.

Diffusion <u>No</u> energy required	Movement of particles in a solution or gas from a higher to a lower concentration	E.g. O ₂ and CO ₂ in gas exchange, urea in kidneys. Factors that affect the rate are concentration, temperature and surface area.
Osmosis <u>No</u> energy required	Movement of water from a dilute solution to a more concentrated solution	E.g. Plants absorb water from the soil by osmosis through their root hair cells. Plants use water for several vital processes including photosynthesis and transporting minerals.
Active transport <u>ENERGY</u> required	Movement of particles from a dilute solution to a more concentrated solution	E.g. movement of mineral ions into roots of plants and the movement of glucose into the small intestines.

/	/		
Human Embryonic stem cells	Can be cloned and made to differentiate into most cell types	Therapeutic cloning uses same genes so the body does not reject the tissue. Can be a risk of infection	
Adult bone marrow stem cells	Can form many types of human cells e.g. blood cells	Tissue is matched to avoid rejection, risk of infection. Only a few types of cells can be formed.	
Meristems (plants)	Can differentiate into any plant cell type throughout the life of the pant.	Used to produce clones quickly and economically, e.g. rare species, crop plants with pest /disease resisitance	

Treatment with stem cells may be able to help conditions such as diabetes and paralysis. Some people object to the use of stem cells on ethical or religious grounds

Enzymes catalyse (increase the rate of) specific reactions in living organisms

The 'lock and key theory' is a simplified model to explain enzyme action

Enzymes catalyse specific reactions in living organisms due to the shape of their active site

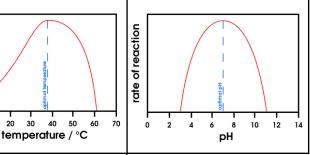
Digestive enzymes speed up the conversion of large insoluble molecules (food) into small soluble molecules that can be absorbed into the bloodstream

The activity of enzymes is affected by changes in temperature and pH

Large changes in temperature or pH can stop

the enzyme from working (denature)

Enzyme changes shape (denatures) the


substrate no longer fits the active site.

Enzymes activity has an optimum temperature

Temperature too high

rate of reaction

Enzyme activity has an optimum pH

pH too high or too

low

Enzymes in digestion

> The human digestive system

AQA GCSE ORGANISATION Part 1

> **Principles of** organisation

An organ system in which organs work together to digest and absorb food.

> consumed in food and drink than used diseases obesity

Non-communicable

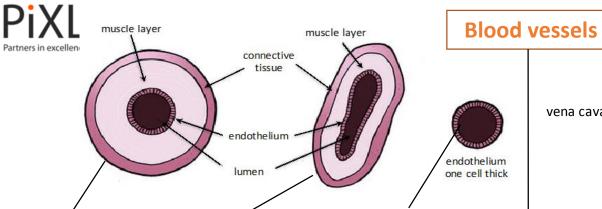
Food tests

Linked to increased rates of cardiovascular disease and development of diabetes type 2.

More energy

mouth oesophagus liver stomach gall bladder pancreas large small intestines intestines

anus


	Sugars (glucose)	Benedicts' test	Orange to brick red precipitate	
\	Starch	Iodine test	Turns black.	
	Biuret Biuret reagent		Mauve or purple solution.	

Made in salivary Break down carbohydrates to Carbohydrases simple sugar (e.g. amylase breaks glands, pancreas, (e.g. amylase) small intestine down starch to glucose). Break down protein to amino Made in stomach, **Proteases** pancreas acids. Made in pancreas Break down lipids (fats) to Lipases (works in small glycerol and fatty acids). intestine) Emulsifies lipids to increase surface area to increase the rate Made in liver, Bile (not an stored in gall of lipid break down by lipase. enzyme) bladder. Changes pH to neutral for lipase to work

The products of digestion are used to build new carbohydrates, lipids and proteins. Some glucose is used for respiration.

organs systems Cells, tissues, and

The basic building blocks Cells e.g. muscle cells of all living organisms. A group of cells with a e.g. muscle similar structure and **Tissues** tissue function. Aggregations (working together) of tissues **Organs** e.g. the heart performing a specific function. Organs working together e.g. the to form organ systems, Organ circulatory which work together to systems system form an organism.

Artery	vein	Capillary
Carry blood away from the heart	Carry blood to the heart	Connects arteries and veins
Thick muscular walls, small lumen, carry blood under high pressure, carry oxygenated blood (except for the pulmonary artery).	Thin walls, large lumen, carry blood under low pressure, have valves to stop flow in the wrong direction, carry deoxygenated blood (except for the pulmonary vein).	One cell thick to allow diffusion, Carry blood under very low pressure.

pulmonary artery vena cava right atrium

The heart is an organ that pumps blood around the body in a double circulatory system

pulmonary

atrium

left ventricle

coronary arteries

unctions	Right ventricle	Pumps blood to the lungs where gas exchange takes place.
different f	Left ventricle	Pumps blood around the rest of the body.
Different structure in the heart have different functions	Pacemaker (in the right atrium)	Controls the natural resting heart rate. Artificial electrical pacemakers can be fitted to correct irregularities.
t structure	Coronary arteries	Carry oxygenated blood to the cardiac muscle.
Different	Heart valves	Prevent blood in the heart from flowing in the wrong direction.

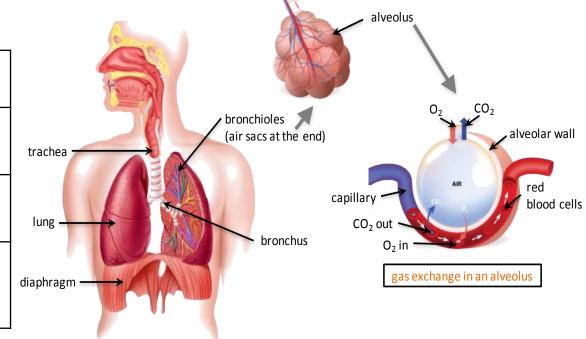
PiXL

Blood

Blood is a tissue consisting of plasma, in which blood cells, white blood cells and platelets are suspended

Plasma (55%)	Pale yellow fluid	Transports CO ₂ , hormones and waste.
Red blood cells (45%)	Carries oxygen	Large surface area, no nucleus, full of haemoglobin.
White blood cells (<1%)	Part of the immune system	Some produce antibodies, others surround and engulf pathogens.
Platelets (<1%)	Fragments of cells	Clump together to form blood clots.

AQA GCSE ORGANISATION part 2


Lungs and gas exchange

right ventricle -

Heart

The heart pumps low oxygen/high carbon dioxide blood to the lungs

Trachea	Carries air to/from the lungs	Rings of cartilage protect the airway.	
Bronchioles	Carries air to/from the air sacs (alveoli)	Splits into multiple pathways to reach all the air sacs.	
Site of gas Alveoli exchange in the lungs		Maximises surface area for efficient gas exchange.	
Capillaries	Allows gas exchange between into/out of blood	Oxygen diffuses into the blood and carbon dioxide diffuses out.	

Partners in excelle	_	lure can be tr	reated with a tr	ansplant o	or artificial h	eart	AQA GO	CSE	ORGAN	ISATION p	art 3		Plan	t tissues		PIXL
Disease	Cause	Effect	Treatment	an							ticle (top	p layer of	the leaf)	Reduces water lo	oss from t	he leaf
зе (СНD)	substances arteries osis)	cannot get ile.	he n it up. I	Plant organ systems	upper epidermis palisade mesophyll		ch va va va va va va va va va va va va va	iloroplast icuole icleus Il wall toplasm	Epiderma tissues		ard cells	and stom	ata	Guard cells oper control water los exchange (oxyge	ss and allo	_
ıry heart disease	up for fatty ne coronary atheroscler	Oxygen-ated blood ca to the cardiac muscle.	Stents: inserted into the blocked artery to open it Statins: lower harmful cholesterol.	Pl	lower epidermis cuticle	quard cell stoma			Palisade mesophy		Palisa	ide cells		Cells near the to are packed with chlorophyll. Both photosynthesis.	chloropla	sts that contain
Coronary	A build in t			leaves	for training the	flow is from roots to leaves — water and — minerals	1:		Spongy mesophy	ΔIT Share	es in the	leaf betw	een cells	Increased surfactions so that carbon disphotosynthesising	ioxide car	
Faulty heart valves	ves don't open close properly	Blood can leak or flow in the wrong direction	Biological valve transplant or a mechanical valve can be inserted	s. stem and	in system nces arou	one way flow — walls toughened with lignin			xylem	lig transp	nin ada _l oortation	strengther pted for ti n of water tion strear	he in the	Allows transport ions from the ro leaves.		
Le Cer	Non-com		ole disease	The roots.	plant or of subs	×	kylem		phloem		e next th	from one prough pol		Transports disso leaves to the res immediate use o	t of the p	lant for
	to uncontro	lled growth	DNA that lead and division					Merister tissue		New cells (roots and shoot tips) are made here including root hair cells		Root hair cells had area for the upta	ake of wat	er by osmosis,		
_	Invade tissues and spread to					neasure the lost over	eter is used to amount of wat time (rate of	ter		ranspiration	Effect of Humidity on Plant Transp	pentration				
tumou	ır	t parts of the condary tume	·			1	cells have end pla with holes	ates		spiration)]		Rate of Ti	is greater leaf	Effect of Wi	nd Velocity on Plant Transpiration
Some control share general share factors and share sha	enetic i	ncrease the r	d ionising radiat isk of cancer by amaging DNA		Stem		two way flow		Tran	The rate at v	which			Humidity	/ anspiration Rate	
heart/ and ce cand drink diet,	factors for flung disease rtain types of cer include sing alcohol, obesity and moking	fact also the live the of u	ese risks cors can co affect e brain, er and health unborn abies		ucleus		permanent vacuole cell wall cell membrane	Tran	spiration	water is lost the leaves plant. Th transpirat stream is t column of w moving throu roots, stem leaves	from of a ne ion the vater agh the and	Tempera humidity moveme light inte affect th of transp	y, air ent and ensity e rate	Rate of Transpiration Temperature on Planspiration Temperature on Planspiration		The shape of the graph for light intensity is the same for temperature (energy)

Partners in excellence	Phagocytes	Phagocytosis	Phagocytes engulf the pathogens and digest them.
bacterian phagocome securions and control of the co	Lymphocytes	Antibody production	Specific antibodies destroy the pathogen. This takes time so an infection can occur. If a person is infected again by the same pathogen, the lymphocytes make antibodies much faster.
		Antitoxin production	Antitoxin is a type of antibody produced to counteract the toxins produced by bacteria.

Identification

Reference using gardening manual

laboratory test for

pathogens, testing

or website,

kit using

monoclonal

antibodies.

Magnesium ions needed

to make chlorophyll -

not enough leads to

chlorosis - leaves turn

Detection

Stunted growth

Spots on leaves

Area of decay

growths

Malformed

stem/leaves

Discolouration

Presence of pests

Nitrate ions needed

for protein synthesis

– lack of nitrate =

stunted growth.

Detection and identification of

plant diseases (bio only)

AQA GCSE INFECTION AND RESPONSE part 1

Plants have several ways of defending themselves from pathogens and animals

Physical	Mechanical		
Thick waxy layers, cell walls stop pathogen entry	Thorns, curling up leaves to prevent being eaten		
Chemical Antibacterial and toxins made by plant			

yellow. Bacteria may produce toxins that damage tissues and make us fell ill

Viruses	Bacteria (prokaryotes)	Protists (eukaryotes)	Fungi (eukaryotes)
e.g. cold, influenza, measles, HIV, tobacco mosaic virus	e.g. tuberculosis (TB), Salmonella, Gonorrhoea	e.g. dysentery, sleeping sickness, malaria	e.g. athlete's foot, thrush, rose black spot
DNA or RNA surrounded by a protein coat	No membrane bound organelles (no chloroplasts, mitochondria or nucleus). Cell wall. Single celled organisms	Membrane bound organelles. Usually single celled.	Membrane bound organelles, cell wall made of chitin. Single celled or multi- cellular

Pathogens are microorganisms that cause infectious disease **Pathogens**

Communicable diseases Viruses live and reproduce inside cells causing damage

Pathogens are identified by white blood cells by the different proteins on their surfaces ANTIGENS.

Antigens (surface protein)

Immune system

White blood cells are

part of the immune

Human

defence

systems

systems

defence

Non-specific

PiXL

ecific ways getting in	 Nose	Nasal hairs, sticky mucus and cilia prevent pathogens entering through the nostrils.
dy has several non sp itself from pathogens	Trachea and bronchus (respiratory system)	Lined with mucus to trap dust and pathogens. Cilia move the mucus upwards to be swallowed.
The human body has several non specific ways of defending itself from pathogens getting in	Stomach acid	Stomach acid (pH1) kills most ingested pathogens.
	Skin	Hard to penetrate waterproof barrier. Glands secrete oil which kill microbes

Pathogens may infect plants or animals and can be spread by direct contact, water or air

	Pathogen	Disease	Symptoms	Method of transmission	Control of spread
	Virus	Measles	Fever, red skin rash.	Droplet infection from sneezes and coughs.	Vaccination as a child.
	Virus	HIV	Initially flu like systems, serious damage to immune system.	Sexual contact and exchange of body fluids.	Anti-retroviral drugs and use of condoms.
	Virus	Tobacco mosaic virus	Mosaic pattern on leaves.	Enters via wounds in epidermis caused by pests.	Remove infected leaves and control pests that damage the leaves.
/	Bacteria	Salmonella	Fever, cramp, vomiting, diarrhoea.	Food prepared in unhygienic conditions or not cooked properly.	Improve food hygiene, wash hands, vaccinate poultry, cook food thoroughly.
	Bacteria	Gonorrhoea	Green discharge from penis or vagina.	Direct sexual contact or exchange of body fluids.	Use condoms. Treatment using antibiotics.
-	Protists	Malaria	Recurrent fever.	By an animal vector (mosquitoes).	Prevent breeding of mosquitoes. Use of nets to prevent bites.
	Fungus	Rose black spot	Purple black spots on leaves.	Spores carried via wind or water.	Remove infected leaves. Spray with fungicide.

nce	Traditionally dru	igs were extracted f microorganisms	rom plants and
	Digitalis	Aspirin	Penicillin
	Extracted from foxglove plants and used as a heart drug	A painkiller and anti-inflammatory that was first found in willow bark	Discovered by Alexander Fleming from the <i>Penicillium</i> mould and used as an antibiotic
/			

Drugs have to be tested and trialled before to check they are safe and effective

e	Efficacy	Make sure the drug works
drugs a ensively ted for:	Toxicity	Check that the drug is not poisonous
New d exter test	Dose	The most suitable amount to take

Most new drugs are synthesised by chemists in the pharmaceutical industry.

Preclinical trials - using cells, tissues and live animals - must be carried out before the drug can be tested on humans.

Clinical trials use healthy volunteers and patients

Stage 1	Stage 2	Stage 3	Stage 4			
Healthy volunteers try small dose of the drug to check it is safe record any side effects	A small number of patients try the drug at a low dose to see if it works	A larger number of patients; different doses are trialled to find the optimum dose	A double blind trial will occur. The patients are divided into groups. Some will be given the drug and some a placebo.			

Specific to one binding site on the antigen. Can target specific chemicals or cells in the body

Antibiotics and painkillers

Bacteria can mutate

Sometimes this makes them resistant to antibiotic drugs.

Discovery and drug development

RESPONSE pt 2 Vaccination

Small amount of dead or inactive form of the pathogen

AQA

INFECTION

AND

1st infection by pathogen

Re-infection by the same pathogen

vaccine. Antibodies are released into the blood. White blood cells detect pathogens.

White blood cells detect pathogens in the

Antibodies are made much faster and in larger amounts.

Created more side effects than expected (fatal in some cases) and are not as widely used as everybody hoped when first developed.

Antibiotics have greatly reduced deaths from infectious bacterial disease

Kill infective bacteria inside the body. Specific bacterial antibiotics e.g. penicillin infections require specific antibiotics.

Painkillers e.g. aspirin, and other paracetamol, ibuprofen medicines

Drugs that are used to treat the symptoms of a disease. They do not kill pathogens

Vaccination

Used to immunise a large proportion of the population to prevent the spread of a pathogen

because viruses live

A person is unlikely to suffer the symptoms of the harmful disease and it's spread in

PiXL

Antibiotics

cannot be

use to

treat viral

pathogens

It is difficult to

develop drugs

to kill viruses

without harming body

tissues

and

reproduce

inside cells

population is prevented

A placebo can look identical to the new drug but contain no active ingredients

Monoclonal antibodies

antibodies

Monoclonal

(Biology only HT)

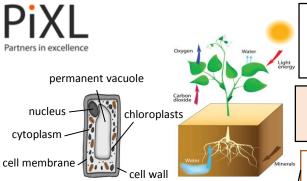
Identical copies of one types of antibody produced in **laboratory**

Double blind trial:

patients and scientists do

not know who receives

the new drug or placebo


until the end of the trial.

This avoids bias.

- 1. A mouse is injected with pathogen
- 2. Lymphocytes produce antibodies
- 3. Lymphocytes are removed from the mouse and fused with rapidly dividing mouse tumour cells
- 4. The new cells are called hybridomas
- 5. The hybridomas divide rapidly and release lots of antibodies which are then collected

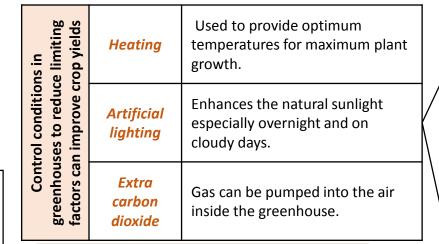
Monoclonal antibodies can be used in a variety of ways

Diagnosis	Detecting pathogens	Detecting molecules	Treatment
e.g. pregnancy test – measure the level of hormones	Can detect very small quantities of chemicals in the blood	Fluorescent dye can be attached so it can be seen inside cells or tissues	Bound to radioactive substance, toxic drug or chemical Cancer cells are targeted to normal body cells are unharmed

Respiration, stored as insoluble starch, fats or oils for storage, cellulose for cell walls, combine with nitrates from the soil to form amino acids for protein synthesis

Plants use the glucose produced in photosynthesis in a variety of ways

Photosynthetic reaction

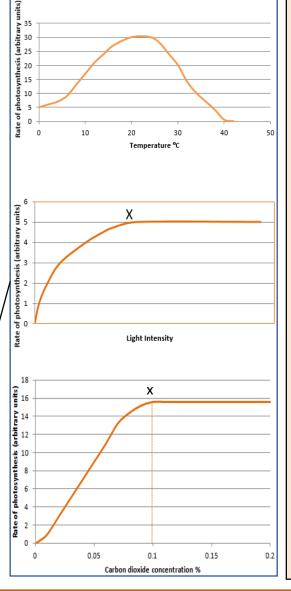

The plant manufactures glucose from carbon dioxide and water using energy transferred from the environment to the chloroplasts by light

	Plants make use
Photosynthesis	of light energy
the	from the
syn	environment
oto	(ENDOTHERMIC)
٦hc	to make food
	(glucose)

$$CO_2$$
 + H_2O $\xrightarrow{\text{light}} O_2$ + $C_6H_{12}O_6$

The rate of photosynthesis is affected by temperature, light intensity, carbon dioxide concentration, and the amount of chlorophyll

	Factor	How the rate is affected	Limiting factors (why the rate stops going up)
photosynthesis	Temperature	As the temperature of the environment the plant is in increases rate of photosynthesis increases (up to a point) as there is more energy for the chemical reaction.	Photosynthesis is an enzyme controlled reaction. If the temperature increases too much, then the enzymes become denatured and the rate of reaction will decrease and stop
affecting the rate of photosy	Light intensity	Light intensity increases as the distance between the plant and the light sources increases. As light intensity increases so does the rate of photosynthesis (up to a point) as more energy is available for the chemical reaction.	At point X another factor is limiting the rate of photosynthesis. This could be carbon dioxide concentration, temperature or the amount of chlorophyll
Factors affecti	Carbon dioxide concentration	Carbon dioxide is needed for plants to make glucose. The rate of photosynthesis will increase when a plant is given higher concentrations of carbon dioxide (up to a point).	At point X another factor is limiting the rate of photosynthesis. This could be light intensity, temperature or the amount of chlorophyll
	Amount of chlorophyll	Chlorophyll is a photosynthetic pigment that absorbs light and allows the reaction between water and carbon dioxide to occur (photosynthesis)	Another factor could limit the rate of photosynthesis. This could be light intensity, temperature or the carbon dioxide concentration


Growers must balance the economics of additional costs of controlling the conditions to maximise photosynthesis with making a profit.

Rate of photosynthesis HT Only

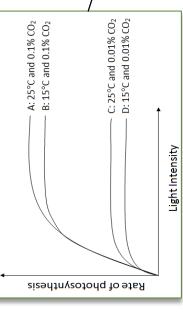
AQA GCSE BIOENERGETICS part

Rate of photosynthesis

Light intensity obeys the inverse square law. This means that if you double the

distance between the plant and the light source you quarter the light intensity

Graph lines C and D:


If temperature is increased by 10°C then a slight increase in rate of photosynthesis occurs.

rate of photosynthesis

point.

Explain graphs of two or three factors and decide which is the limiting factor

Graph Lines A and B: If carbon dioxide concentration is increased from 0.01% to 0.1% then a large increase in rate occurs up to a point.

temperature are increased the Graph lines A and D: If carbon increases significantly up to a tissue can be damaged when carbon dioxide concentrations exceed 0.1% limited by temperature and/or amount of chlorophyll. Plant

dioxide concentration and

During long periods of vigorous activity muscles become fatigued and stop contracting efficiently An organism will receive all the energy it needs for living processes as a result of the energy transferred from respiration

For movement

For keeping

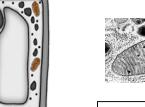
warm

For chemical

reactions

Smooth muscle cells

To enable muscles to contract in animals.


a cold environment.

To keep a steady body temperature in

To build larger molecules from smaller

cytoplasm

mitochondria

Electron micrograph

of a mitochondrion

animal cell

plant cell

Response to exercise

During
exercise
the human
body reacts
to
increased
demand
for energy

Heart rate increases

Top pump oxygenated blood faster to the muscle tissues and cells.

Breathing rate and breath volume increase

This increases the amount of oxygen entering the blood stream.

Metabolism is the sum of all the reactions in a cell or the body

Metabolism

The energy transferred by respiration in cells is used by the organism for the continual enzyme controlled processes of metabolism.

Metabolism

Conversion of glucose to starch, glycogen and cellulose.

The formation of lipid molecules from a molecule of glycerol and three molecules of fatty acid.

The use of glucose and nitrate ions to form amino acids which in turn are used to synthesise proteins.

Respiration

Breakdown of excess proteins to form urea for excretion.

The extra amount of oxygen required to remove all lactic acids from cells is called the oxygen debt

Lactic acid builds up in the muscles cells during exercise Blood flows through the muscle cells and transports the lactic acid to the liver The liver
oxidises the
lactic acid and
converts it
back to
glucose

Response to exercise HT only

Respiration

AQA GCSE
BIOENERGETICS
part 2

Cellular respiration is an exothermic reaction which is continuously occurring in all living cells

Anaerobic respiration in plant and yeast cells

The end products are ethanol and carbon dioxide. Anaerobic respiration in yeast cells is called fermentation

glucose → ethanol + carbon dioxide

This process is economically important in the manufacture of alcoholic drinks and bread.

Anaerobic respiration

Respiration when oxygen is in short supply. Occurs during intensive exercise

During hard exercise, muscle cells are respiring so fast that blood cannot transport enough oxygen to meet their needs.

Glucose is partially oxidised to produce lactic acid which builds up in muscle tissue causing them to become painful and fatigued.

glucose → lactic acid

Anaerobic respiration releases a much smaller amount of energy than aerobic respiration.

The incomplete oxidation of glucose causes a build up of lactic acid and creates an oxygen debt

Aerobic respiration

Respiration with oxygen. Occurs inside the mitochondria continuously

Glucose is oxidised by oxygen to transfer the energy the organism needs to perform it's functions.

 $C_6H_{12}O_6 + O_2 \longrightarrow CO_2 + H_2O$ glucose + oxygen \longrightarrow carbon dioxide + water

Aerobic respiration releases a large amount of energy from each glucose molecule

Partners in excellence		light in dim conditions
	Retina	Light sensitive cell layer.
	Optic nerve	Carries impulse to brain.
e eye	Sclera	Protects the eye.
Structures of the eye	Cornea	Transparent layer that covers the pupil and iris.
tructur	Iris	Pigmented layer, controls size of pupil.
S	Ciliary muscles	Controls thickness of lens.
	Suspensory ligaments	Connects lens to ciliary muscles.

Accommodation is the process of

changing the shape of the lens to focus

Far object

Ciliary muscles

relax, suspensory

ligaments pulled

tight, lens pulled

thin, light is only

slightly refracted.

Myopia (short

sightedness)

Treated using a

concave lens so

light is focused on

the retina.

New technologies now include hard/soft

contact lens, laser surgery to change the

shape of the cornea and a replacement

lens in the eye.

Near object

Ciliary muscles

contract,

suspensory

ligaments loosed,

lens get thicker,

light is more

refracted.

Hyperopia (long

sightedness)

Treated using a

convex lens so the

light is focused on

the retina.

The iris can dilate the pupil

(aperture) to let in more

Sense organ containing receptors sensitive to light intensity and colour

suspensory ligament

ciliary muscles

Neuroscientists

have been able to map regions

of the brain by

studying

patients with

brain damage,

electrical

stimulation and

MRI.

Cells called Human control systems include Detect stimuli (changes in environment). receptors **Coordination** e.g. brain, spinal cord and pancreas that receive information from receptors. centres Muscles or glands, which bring about **Effectors** responses to restore optimum levels.

Enables humans to react to their surroundings and to co-ordinate their behaviour

The Eye (Bio only)

cerebellun

different regions that

The brain has

AQA GCSE HOMEOSTASIS AND RESPONSE part 1

The human nervous system

cell body

Typical motor neurone

Synapse (gap where two

neurones meet).

axon

direction of impulse

neurotransmitter

Long axon carries impulse from receptor to

Allows impulses to travel between sensory

Long axon carries impulse from receptor to

Muscle or gland that carries out response.

and motor neurones in the spinal cord.

Gap where neurones meet. Chemical

message using neurotransmitter.

neurotransmitter receptors

Detect stimuli.

spinal cord.

effector.

axon with insulating sheath

axon terminal

Synaptic cleft

Information from receptors passes along cells (neurones) as electrical impulses to the central nervous system (CNS)

The CNS is the brain and the spinal cord.

Coordinates the response of effectors; muscles contracting or glands secreting hormones

Stimulus

Receptor

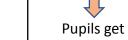
Coordinator

Effector

Response

Lights switch on

Cells in retina


CNS

Muscles

connected to iris

smaller

sensory

(Bio only) dendrites

cerebral cortex

The brain controls complex behaviour. It is made of billions of interconnected neurones.

The Brain

Largest part of the **Cerebral** human brain. Higher cortex thinking skills e.g. speech, decision making. Balance and voluntary Cerebellum muscle function e.g. walking, lifting.

> Involuntary (automatic) Medulla body functions e.g. breathing, heart rate.

Benefit: thought to alleviate the symptoms of some mental illnesses.

Risks: bleeding in the brain, seizures. e.g. Lobotomy loss of brain function. Procedure was abandoned in the 1950s due to risk.

spinal cord (effector)

Reflex actions are automatic and rapid; they do not involve the conscious part of the brain and can protect humans from harm.

 cutting part of the brail cortex disease

damage and

Reflex arc

better hope – brighter future

Receptor

Sensory neurone

Synapse

Relay neurone

Motor neurone

Effector

Treating brain

Blood glucose concentration **Controls** in the **Body** human temperature body

These automatic control systems may involve nervous responses or chemical responses.

The regulation of internal conditions of a cell or organism to maintain optimum conditions for function.

Water levels

Homeostasis maintains optimal conditions for enzyme action and all cell functions.

Homeostasis

Water and nitrogen balance (Biology only)

If body cells Water exhaled **Uncontrolled** lose or gain in lungs, water, water/ion urea too much ions and urea in loss water by sweat. osmosis they **Controlled** do no Via the kidneys water/ion/urea function in urine. loss efficiently.

> Kidney failure is treated by organ transplant or dialysis.

Kidney function

Maintain water balance of the body.

Produce urine by filtration of the blood and selective reabsorption of glucose, ions and water.

A dialysis machine removes urea from the blood by diffusion while maintaining ion and glucose levels.

(HT only) **ADH**

Acts on kidney tubules to control water levels.

Released by pituitary gland when blood is too concentrated. Water is reabsorbed back into the blood from the kidney tubules (NEGATIVE FEEDBACK).

Thermoregulatory

centre (hypothalamus)

Control of body

temperature

(Biology only)

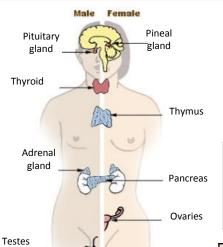
AQA GCSE

HOMEOSTASIS

AND RESPONSE

PART 2

Monitoring body temperature **Thermoregulatory** Contains receptors sensitive to the temperature centre of the blood. Contains temperature receptors, sends nervous Skin impulses to the thermoregulatory centre.


Blood vessels dilate (vasodilation), temperature Too sweat produced from sweat high glands. Blood vessels constrict Too

Body (vasoconstriction), sweating stops, low muscles contract (shivering).

(HT) Thermal energy is lost from blood near the surface of the skin, sweat evaporates transferring thermal energy.

(HT) Thermal energy loss at the surface of the skin is reduced, respiring muscles cells transfer chemical to thermal energy.

Human endocrine system

system Composed of glands which secrete chemicals called hormones directly into the bloodstream.

The blood carries the hormone to a target organ where is produces an effect. Compared to the nervous system effects are slower but act for longer.

Pituitary gland

'Master gland'; secretes several hormones into the blood

Stimulates other glands to produce hormones to bring about effects.

feedback (HT only)	Adrenaline	Produced in adrenal glands, increases breathing/heart rate, blood flow to muscles, conversion glycogen to glucose. Prepares body for 'fight or flight'.
e fe		Produced in the thyroid gland.

Increasing thyroxine levels prevent the release of thyroid stimulating hormone which stops the release of thyroxine.

Control of

blood glucose

concentration

Negative stimulates the basal metabolic **Thyroxine** rate. Important in growth and development.

Monitored and controlled by the pancreas Too high (HT only) Too low Pancreas produces Pancreas produces the hormone insulin, the hormone glucose moves from glucagon that the blood into the causes glycogen to cells. In liver and be converted into muscle cells excess glucose and glucose is converted released into the to glycogen for blood. storage.

Type 2

and increasing exercise.

Blood glucose concentration

Diabetes Type 1 Pancreas fails to produce sufficient Obesity is a risk factor. Body cells no insulin leading to uncontrolled longer respond to insulin. Common blood glucose levels. Normally treatments include changing by diet treated by insulin injection.

<u>negative feedback</u> system. Insulin is released to reduce glucose levels and which cause the pancreas to release glucagon (HT) Rising glucose levels inhibit the release of glucagon in a

FSH and LH are used as 'fertility drugs' to help someone become pregnant in the normal way

In Vitro Fertilisation (IVF) treatment.

Involves giving a mother FSH and LH to stimulate the maturation of several eggs

The eggs are collected from the mother and fertilised by sperm from the father in a laboratory.

The fertilised eggs develop into embryos.

At the stage when they are tiny balls of cells, one or two embryos are inserted into the mother's uterus

Hormones are used in modern reproductive technologies to treat infertility

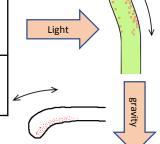
hormones to coordinate and control growth Plants produce

Plant responses using hormones (auxins)

Light (phototropism)

Gravity

(geotropism or gravitropism)


Light breaks down auxins and they become unequally distributed in the shoot. The side with the highest concentration of auxins has the highest growth rate and the shoot grows toward the light.

Gravity causes an unequal distribution of auxins. In roots the side with the lowest concentration has the highest growth rate and the root grows in the direction of gravity.

In new shoots from a seedling the unequal distribution of auxins causes the shoot to grow away from gravity.

(HT only) Gibberellins are important in initiating seed germination.

(HT only) Ethene controls cell division and ripening of fruits.

(womb).

The use of hormone to treat infertility (HT only)

Contraception

Contain hormones to inhibit FSH

production so that no eggs

hormones **Plant**

hormones are used in agriculture and Plant growth

Auxins horticulture Ethene

Gibberellins

Weed killers, rooting powders, promoting growth in tissue culture. Control ripening of fruit during storage and transport.

End seed dormancy, promote flowering, increase fruit size.

Potential disadvantages of IVF

Emotional and physical stress.

Success rates are not high.

Oral contraceptives

Multiple births risk to mother and babies.

AQA GCSE HOMEOSTASIS AND RESPONSE PART 3

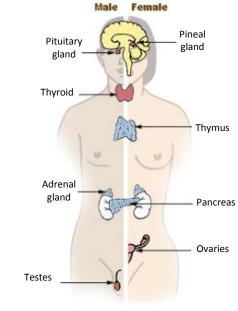
Hormones in human reproduction

During puberty reproductive hormones cause secondary sexual characteristics to develop

Oestrogen (main female reproductive hormone)

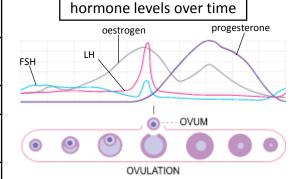
hormones (HT only)

plant


of

Produced in the ovaries. At puberty eggs being to mature releasing one every 28 days ovulation.

(HT only) a graph of


Testosterone (main male reproductive hormone)

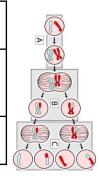
Produced in the testes stimulation sperm production.

Fertility can be controlled by hormonal and non hormonal methods

		mature.	
e	Injection, implant, skin patch	For slow release of progesterone to inhibit the maturation and release of eggs for months or years.	
d I	Barrier methods	Condoms or diaphragms which prevent sperm reaching the egg.	
	Intrauterine devices	Prevent implantation of an embryo or release a hormone.	
	Spermicidal agents	Kill or disable sperm.	
	Abstaining	Avoiding intercourse when an egg may be in the oviduct.	
	Surgery	Male or female sterilisation.	

cycle	Follicle stimulating hormone (FSH)	Causes maturation of an egg in the ovary.	(HT) FSH stimulates ovaries to produce oestrogen.
Menstrual	Luteinising hormone (LH)	Stimulates release of an egg.	(HT) Oestrogen stop FSH production and
Me	Oestrogen and progesterone	Maintain uterus lining.	stimulates LH production in pituitary gland.

Meiosis halves the number of chromosomes


Gametes are made in reproductive organs (in animals ovaries and testes)

Cells divide by meiosis to form gametes

Copies of the genetic information are made.

The cell divides twice to form four gametes each with single set of chromosomes.

All gametes are genetically different from each other.

Sexual reproduction involves the fusion of male and female gametes.

Asexual reproduction involves only one parent and no fusion of gametes.

Sperm and egg in animals.

Pollen and egg cells in flowering plants.

e.g. cloning of females only in an aphid population.

Produced by meiosis. There is mixing of genetic information which leads to a variety in the offspring.

Only mitosis is involved. There is no mixing of genetic information. This leads to genetically identical clones.

Advantages and disadvantages of sexual and asexual reproduction (Biology only)

Gametes join at fertilisation to restore the number of chromosomes

The new cell divides by mitosis. The number of cells increase. As the embryo develops cells differentiate.

When the protein chain is complete it folds to form a unique shape. This allows proteins to do their job as enzymes, hormones or new structures such as collagen.

Some change the shape and affect the function of proteins e.g. and enzyme active site will change or a structural protein loses its strength

Protein

synthesis

(HT only)

nucleotide consists of a common

sugar, phosphate group

different nucleotides. Each

and one C, G & T

Most do not alter the protein so that its appearance or function is not changed.

In DNA the

complementa

ry strands C,

A, T, G always

link in the

same way. C

always linked

to G on the

opposite

strand and A

to T.

Repeating

nucleotide units.

nucleotide

Mutations occur

continuously (HT only)

(HT) Making new proteins (protein synthesis)

Composed of chains of amino acids. A sequence of 3 bases codes for a particular amino acid.

DNA in the nucleus unravels.

Enzymes make a copy of the DNA strand called mRNA.

mRNA moves from the nucleus to ribosome in the cytoplasm.

Ribosomes translate each 3 bases into amino acids according to mRNA template

Ribosomes link amino acids brought by carrier proteins.

A long chain of amino acids form. Their specific order forms a specific protein.

A sequence of 3 bases is the code for a particular amino acid. The order of bases controls the order in which each amino acid is assemble to produce a specific protein.

Reproduction advantages/disadvantages

Asexual Sexual Needs two Only one parent needed (quicker). parents. **Produces variation** Identical offspring (no variation). in the offspring. If the environment Vulnerable to changes variation rapidly changing gives a survival conditions due to advantage by lack of variation. natural selection. Negative **Negative mutation** mutations are not can affect all always inherited. offspring. Natural selection Food/medicine can by speeded up using selective production can be breeding to extremely quick. increase food production.

Meiosis

Meiosis leads to non-identical cells being formed while mitosis leads to identical cells being formed

DNA and the genome

Genetic material in the

nucleus is composed of

a chemical called DNA.

DNA structure

Polymer made up of two

strands forming a

double helix.

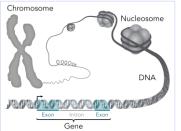
Contained in structures

called chromosomes. A

gene is a small section of

DNA on a chromosome.

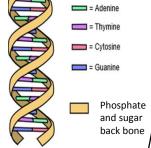
Each gene codes for a


sequence of amino acids

to make a specific

protein.

Sexual and asexual reproduction


AQA GCSE INHERITANCE, **VARIATION AND EVOLUTION Part 1**

The genome is

the entire genetic material of an organism.

DNA structure (Biology only)

(HT only) Not all parts code for proteins. Non-coding parts can switch genes on and off. Mutations may affect how genes are expressed.

The whole human genome has now been

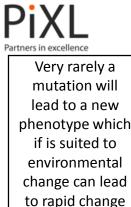
studied.

It is of great importance for future medical

Searching for genes linked to different types of disease.

made from four

DNA is polymer


Understanding and treatment of inherited disorders.

Tracing migration patterns from the past.

Malarial Asexually in the human host but parasites sexually in a mosquito. Some organisms use Asexually by spores, sexually to Fungi both methods give variation. depending on Produce seeds sexually, asexually the **Plants** by runners in strawberry plants, circumstances bulbs division in daffodils.

of 4 different bases A, phosphate group\

developments

Embryo screening: small piece of developing placenta removed to check for presence of faulty genes

Gene therapy: replacing the faulty allele in somatic cells with a normal allele

Mother (

Amy

/gene therapy issues Social Not available to everyone (due to cost). Should only 'healthy' embryos be implanted	Embryo	Economic	Costly and not 100% reliable.
Should only 'healthy' emhryos he implanted	/gene	Social	Not available to everyone (due to cost).
following screening.	issues	Ethical	Should only 'healthy' embryos be implanted following screening.

Mutations occur continuously

characteristics of individuals in a population may be due to Variation: difference in the

in the species.

Genetic causes

(inheritance)

Environmental

causes (condition

they have

developed in)

A combination of

genes and

environment

Genotype

Phenotype

All genetic variation arises in mutation, most

have no effect on phenotype, some influence

but very few determine phenotype.

There is usually extensive genetic variation within the population of a species e.g. hair colour, skin colour, height that can also be affected by

environment e.g.

nutrition, sunlight.

all of the offspring would have the disorder. He must be heterozygous a family tree: If the father was homozygous dominant then

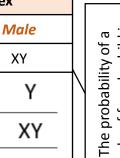
Embryo screening and gene therapy may alleviate suffering

Some disorders are inherited. They are caused by the inheritance of certain alleles

Polydactyly	Cystic fibrosis
Caused by inheriting a dominant allele.	Caused by inheriting a recessive allele (both parents have to at least carry it).
Causes a person/anim al to have	A disorder of the cell membrane. Patients cannot

extra toes or

fingers.


Ordinary human body cells contain pairs of chromosomes

determination Sex

23

Female XXGametes Χ

Χ

of female child is 6. The ratio is 1:1 male c 50%.

PiXL

Using a punnet square (using mouse fur

XY

One pair of chromosomes

carry the genes that

determine sex

Х

XX

XX

colour as an example)			
Parent phenotype	Black fur	White fur	
Parent genotype	ВВ	bb	
What gametes are present	In each egg	In each sperm	

Gametes	b	b
В	>Bb	Bb
В	Bb	Bb

The probability of black fur offspring phenotype is 100%. All offspring genotypes are heterozygous (Bb).

Crossing two heterozygous mice (Bb)

Gametes	В	b
В	ВВ	Bb
b	Bb	bb

The probability of black fur is 75% and white fur 25%. The ratio of black to white mice is 3:1

Variation

AQA GCSE INHERITANCE, **VARIATION AND EVOLUTION PART 2**

Peter

Inherited disorders

Female without disorder

Female with disorder

Male without disorder

Male with disorder

The genome and its interaction with the environment influence the development of phenotypes

blonde hair, blue eyes.

Sex cells produced in meiosis. **Gamete** Chromosome A long chain of DNA found in the nucleus. Define terms linked to genetics Gene Small section of DNA that codes for a particular protein. Allele Alternate forms of the same gene. A type of allele – always expressed if only one copy present **Dominant** and when paired with a recessive allele. A type of allele – only expressed when paired with another Recessive recessive allele. Pair of the same alleles, dominant or recessive. Homozygous Two different alleles are present 1 dominant and 1 recessive. Heterozygous Alleles that are present for a particular feature e.g. Bb or bb

Physical expression of an allele combination e.g. black fur,

Some characteristics are controlled by a single gene e.g. fur colour, colour blindness.

Father

Sam

The alleles present, or genotype operate at a molecular level to develop characteristics that can be expressed as a phenotype.

Most characteristics are as a result of multiple genes interacting.

Genetic inheritance

The concept of probability in predicting results of a single gene cross.

control the

viscosity of

their mucus.

Dominant and recessive allele combinations

Dominant	Recessive
Represented by a capital letter e.g. B.	Represented by a lower case letter e.g. b.

3 possible combinations: Homozygous dominant BB Heterozygous dominant Bb Homozygous recessive bb

Over time this results in the formation of new

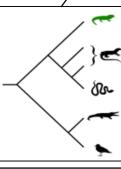
Scottish Blackface (Cytoplasmic Donor)

The theory of evolution by natural selection.

Species of all living things have evolved from simple life forms that first developed 3 billion years ago.

Through natural selection of variants (genotypes) that give rise to phenotypes best suited to their environment or environmental change e.g. stronger, faster. This allows for variants to pass on their genotype to the next generation.

If two populations of one species become so different in phenotype that they can no longer interbreed to produce fertile offspring they have formed two new species.



Classification of living organisms

Use current classification data for living organisms and fossil data for extinct organisms

Humans have been doing this for thousands of years since

Choosing characteristics

Evolutionary trees are a method

used by scientists to show how

organisms are related

Desired characteristics are chosen for usefulness or appearance

Disease resistance in food crops.

Animals which produce more meat or milk.

Domestic dogs with a gentle nature.

Large or unusual flowers.

flowers and insects.

PiXL

Selective breeding can lead to 'inbreeding' where some breeds are particularly prone to disease or inherited defects e.g. British Bulldogs have

breathing difficulties.

Concern: effect of GMO on wild populations of

Genes from the chromosomes of humans or other organisms can be 'cut out' and transferred to the cells of other organisms.

Genetically modified crops (GMD)

Crops that have genes from other organisms

resistant to insect attack or herbicides.

more

To become

To increase the yield of the crop.

A change in the inherited characteristics of a population over time through the process of natural selection.

Finn-Dorset

Cloning (Biology only)

Direct Current Pulse

Evolution

AQA GCSE INHERITANCE VARIATION AND **EVOLUTION** PART 3

they first bred food from crops and domesticated animals. The process by which humans breed

plants/animals for particular genetic characteristics

> **Selective** breeding

Genetic engineering

Modern medical is exploring the possibility of GM to over come inherited disorders e.g. cystic fibrosis

Small groups of cells to grow new plants. Important Tissue

Cloning techniques in plants/animals

for preservation of rare plants and commercially in nurseries.

Cuttings

culture

Part of a plant is cut off and grown into full plant.

Embryo transplants

Splitting apart cells from animals embryo before they become specialised. New clone embryos are inserted into womb of adult female.

Concern: some people have ethical objections to adult cell cloning e.g. welfare of the animals.

Genetic engineering process (HT only)

Selective breeding

Choosing parents with the desired

characteristics from a mixed

population

Chosen parents are bred together.

From the offspring those with

desired characteristics are bred

together.

Repeat over several generations

until all the offspring show the

desired characteristics.

Concern: effect of GMO on human

health not fully explored

- 1. Enzymes are used to isolate the required gene.
- 2. Gene is inserted into a vector bacterial plasmid or virus.
- 3. Vector inserts genes into the required cells.

4. Genes are transferred to plants/animals/microbes at an early stage of development so they develop the required characteristics.

Adult cell cloning

- 1. Nucleus is removed from an unfertilised egg.
- 2. Nucleus from body cell is inserted into egg cell.
- 3. An electric shock stimulates the egg to divide into an embryo

4. Embryo cells are genetically

identical to adult cells.

5. When embryo has developed into ball of cells it is inserted into host womb.

have plasmids with the foreign

Charles **Darwin**

Theory of evolution by natural selection.

Individual organisms within a particular species show a wide range of variation for a characteristic.

Individual most suited to the environment are more likely to breed successfully.

Characteristics enable individuals to survive are then passed on to the next generation.

Theory of

evolution

(Biology

only)

Carl Woese

3 domain based on

chemical analysis.

Archaea (primitive

bacteria), true

bacteria, eukaryota.

Evidence from around the world, experimentation, geology, fossils, discussion with other scientists (Alfred Wallace) lead to:

Charles Darwin 'On the Origin of the Species' (1859)

Published the theory of evolution by natural selection

Slowly accepted; challenged creation theory (God), insufficient evidence at time, mechanism of inheritance not vet known.

Other theories e.g. Lamarckism are based on the idea that changes occur in an organism during its lifetime which can be inherited. We now know that in the vast majority of cases this cannot occur.

The full human

classification

7	Kingdom	Animalia
classified ings	Phylum	Chordata
class ings	Class	Mammalia
	Order	Primates
Linnaeus Iiving th	Family	Hominidae
Carl I	Genus	Ното
)	Species	sapiens

Classification of living organisms

Due to improvements in microscopes, and the understanding of biochemical processes, new models of classification were

proposed.

Organisms are named by the binomial system of genus and species. Humans are Homo sapiens

Fossils and antibiotic resistance in bacteria provide evidence for evolution.

Mutations Antibiotic resistant produce antibiotic resistant strains which can spread

Resistant strains are not killed.

Strain survives and reproduces.

People have no immunity to strain and treatment is ineffective.

Extinction

When no members of a species survive

Due to extreme geological events, disease, climate change, habitat destruction, hunting by humans.

Fossils tell scientists how much or how little different organisms have changed over time.

Developed since its proposal from information gathered by other scientists.

Speciation (Biology only)

AQA GCSE INHERITANCE VARIATION AND EVOLUTION PART 4

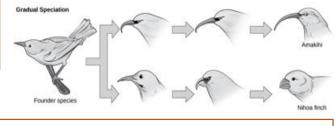
evolution

Evidence for

Alfred Wallace

Published joint writings with Darwin in 1858. Independently

Did much pioneering work on


speciation but more evidence

over time has lead to our

current understanding.

Worked worldwide gathering evidence.

Best know for work on warning colouration in animals and his theory of speciation.

The understanding of genetics (biology only)

proposed the

theory of

evolution by

natural

selection

Gregor Mendel

In the mid 19th century carried out breeding experiments on plants

Inheritance of each characteristic is determined by units that are passed on to descendants unchanged.

Fossils

'remains' of ancient organisms which are found in rocks

Parts of organism that have not decayed as necessary conditions are absent.

Parts of the organism replaced by minerals as they decay.

Preserved traces of organisms such as footprints, burrows and rootlet traces.

Early forms of life were soft bodied and cannot be certain about how life began geological activity, few traces are left behind and have been destroyed by

Led to gene theory being developed but not until long after Mendel died.

Allows biologists to understand the diversity of species on the planet.

Speciation

Due to isolation of a population of a species e.g. species are split across far apart islands.

Environmental conditions differ for populations e.g. types of food available, habitat.

Individuals in each population most suited to their environments are more likely to breed successfully.

Over long periods of time each population will have greater differences in their genotype.

If two populations of one species become so different in phenotype that they can no longer interbreed to produce fertile offspring they have formed two new species.

Further understanding of genetics

Improving technology allowed new observations.

Late 19th century: behaviour of chromosomes in cell division.

Early 20th century: chromosomes and Mendel's 'units' behave in similar ways. 'units' now called genes must be located on chromosomes.

Mid 20th century: structure of DNA determined. Mechanism of gene function worked out.

Evolution is widely accepted. Evidence is now available as it has been shown that characteristics are passed on to offspring in genes.

					F
stem		Environment	The conditions surrounding an organism; abiotic and biotic.		
		Habitat	Place where organisms live e.g. woodland, lake.		
Asos	Ecosystem	Population	Individuals of a species living in a habitat.		
	_	Community	Populations of different species living in a habitat.		
			Organisms require a supply of materials from their	_	

Organisms require a supply of materials from their surroundings and from the other living organisms.

Bacteria respire when breaking down dead organisms releasing CO2.

CO₂ taken in

during photosynthesis.

Decomposition and material cycling **CARBON CYCLE**

Surviving and reproducing

Competition Animals compete with each other for food, mates and territory. Species depend on each other for food, shelter, Interdependence

Plants in a community or habitat compete with each other for light, space, water and mineral ions.

pollination, seed dispersal etc. Removing a species can affect the whole community

EXAMPLE: climate change is leading to more dissolved CO₂ in oceans lowering the pH of the water affecting organisms living there.

greys also carry a pathogen food for red squirrels. The increased competition for EXAMPLE: Introduction of

methane gas, used as a fuel.

Factors affecting rate of decay

Temperature, water, oxygen

Increase the rate of decay. In

enzyme controlled reactions

raising the temperature too

high will denature the

enzymes.

conditions for making

Farmers optimise

compost for use as

Anaerobic decay in biogas

generators produces

AQA GCSE

ECOLOGY PART 1

Adaptations

Interdependence

and competition

Levels of

organisation

Organisms adaptations enable them to survive in conditions where they normally live.

Abiotic and biotic factors.

be structural,

behavioural or

functional.

Adaptations may Oxygen levels for aquatic organisms.

Living factors that affect a community

Biotic

Living intensity. Availability of food. Temperature.

Moisture levels.

Abiotic

Non-living factors

that affect a

community

New predators Soil pH, mineral content.

Wind intensity and direction.

Carbon dioxide levels for a plant.

arriving.

New pathogens.

One species outcompeting so numbers are no longer sufficient to breed

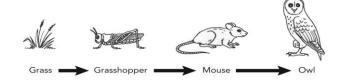
Photosynthetic organisms are the producers of biomass for life on Earth

Organisms respire

releasing

Food chains

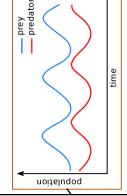
Dead organisms decayed by bacteria


and fungi releasing carbon.

Materials are recycled to provide the

building blocks for future organisms

Feeding relationships in a community


Primary Tertiary Secondary Producer consumer consumer consumer

organisms releases Breakdown of dead mineral ions can

All food chains begin with a producer e.g. grass that is usually a green plant or photosynthetic algae.

Consumers that kill and eat other animals are predators and those eaten are prey.

In a stable community the numbers of predators and prey rise and fall in cycles.

Cactus in dry, hot Polar bear in extreme cold artic desert

No leaves to reduce water loss, wide deep roots for absorbing water.

Plants

Adaptations

Animals

Hollow hairs to trap laver of heat. Thick layer of fat for insulation.

Extremophiles

Deep sea vent

bacteria

Populations form in thick layers to protect outer layers from extreme heat of vent.

Increasing birth rate.

Changing diets in developing countries.

New pests and pathogens affecting farming.

Environmental changes e.g. famine when rains fail.

Cost of agriculture input.

Conflicts (war) affecting water of food availability

Farming techniques

Increasing efficiency of food production

Reduce energy waste, limiting movement, control temperature, high protein diet to increase growth.

Global warming

Levels of CO, and methane in the atmosphere are increasing. Decreased land availability from sea level rise, temperature rise damages delicate habitats, extreme weather events harm populations of plants and animals.

There is a global consensus about global warming and climate change based on systematic reviews of thousands of peer reviewed publications.

Global Warming Predictions

Global warming

Food production (biology only)

Temperature Increase (°C)

AQA GCSE ECOLOGY PART 2

Maintaining biodiversity

Grasses

Terrestrial

Ecosystem

Fish stocks in oceans are Sustainable fisheries Maintain/grow fish stocks to a sustainable

level where breeding

continues or certain

fishing quotas.

species may disappear.

By controlling net size,

Trophic levels and biomass (biology only)

Phytoplankton Aquatic Level 4 Level 3 Level 2 Level 1

Some people have concerns about the treatment of animals.

Decomposers break down

dead plants and animal matter

by secreting enzymes. Small

soluble food molecules than

diffuse into the

microorganism.

Some of the programmes potentially conflict with human needs for land use, food production and high living standards.

Human activity can have a positive

impact on biodiversity

Scientists and concerned citizens

Put in place programmes to reduce the negative impacts of humans on

ecosystems and biodiversity

Breeding programmes for endangered

species.

Protection and regeneration of rare

habitats.

Reintroduction of field margins and

hedgerows in agricultural areas where

farmers grow only one type of crop.

Reduction of deforestation and CO₂

emissions by some governments.

Recycling resources rather than dumping

waste in landfill.

Biotechnology

Meeting the demands of a growing population

Fungus Fusarium to produce mycoprotein. Requires glucose syrup, aerobic conditions. Biomass is harvested and purified.

GM bacterium produces insulin to treat diabetes.

GM crops to provide more/nutritional food (golden rice).

Transfer of biomass

Biomass is lost between the different trophic levels

Producers transfer about 1% of the incident energy from light for photosynthesis.

Approximately 10% of the biomass from each trophic level is transferred to the level above.

Large amounts of glucose is used in respiration, some material egested as faeces or lost as waste e.g. CO₂, water and urea in urine.

Trophic levels can be represented by numbers and biomass in pyramids.

Trophic levels are numbered sequentially according to how far the organisms is along the food chain.

Level 1	Producers	Plants and algae.
Level 2	Herbivores	Primary consumers.
Level 3	Carnivores	Secondary consumers.
Level 4	Carnivores	Tertiary consumers.

Apex predators with no predators. carnivores

Sampling techniques

Quadrats

Transects

Maintain a great biodiversity **Ensures** the stability of ecosystems

By reducing the dependence on one species on another for food, shelter, maintenance of the physical environment.

Future of human species

Many human activities are reduction biodiversity and only recently measures have been taken to stop it.

Human activity can have a negative impact on biodiversity

Pollution kills plants and animals which can reduce biodiversity.

Waste management

Rapid growth in human population and higher standard of living

More resources used and more waste produced.

Pollution in water; sewage, fertiliser or toxic chemicals.

Pollution in air; smoke or acidic gases.

Pollution on land; landfill and toxic chemicals.

Biodiversity is the variety of all different species of organisms on Earth, or within an ecosystem

Experimental methods are used to determine the distribution and abundance of a species.

Organisms are counted

Organisms are counted

along a belt (transect) of

within a randomly

placed square

the ecosystem.

Processing data

Biodiversity

Impact of environmental change

(Biology HT only)

ECOLOGY PART 3

Biodiversity and the

effect of human

interaction on the

ecosystem

AQA GCSE

Waste, land use and deforestation

Land use

Humans reduce the amount of land and habitats available for other plants, animals and microorganisms.

Building and quarrying.

Farming for animals and food crops.

Destruction of peat bogs to produce cheap

Dumping waste.

compost for gardeners/farmers to increase food production.

The decay or burning of peat

release CO₂ into the atmosphere.

Median Middle value in a sample. Most occurring value in a sample. Mode The sum of all the value in a sample Mean divided by the sample number.

> changes affect the distribution of **Temperature**

Availability of water

Composition of atmospheric gases

These changes might be seasonal, geographic or caused by human interaction.

Large scale deforestation

In tropical areas (e.g. rain forest) has occurred to:

Provide land for cattle and rice fields, grow crops for biofuels.

Deforestation reduces biodiversity and removes a sink for increasing the amount CO₂ in the atmosphere. This conflicts with conserving peat bogs and peatlands as habitats for biodiversity and reduce CO₂ emissions.

Example: Several species of bird migrate from cold winter conditions to warmer conditions closer to the equator.