



| Electromagnetism                 | (Separate Physics)                                                                                                                                                                                      |                                                                                                                        |                                               |                  |  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------|--|
| 1. Key Terms in                  | this sub-unit                                                                                                                                                                                           | 2. Quantiti                                                                                                            | es & Uni                                      | ts               |  |
| Permanent magnet                 | A permanent magnet produces its own magnetic force.                                                                                                                                                     | Force (F)                                                                                                              |                                               | Newton (N)       |  |
| Induced magnet                   | A material that becomes a magnet when placed in a magnetic field, but quickly loses its magnetism when removed from the field.                                                                          | Magnetic flux density<br>(B)Tes                                                                                        |                                               | Tesla (T)        |  |
| Magnetic materials               | Iron, steel, nickel, cobalt                                                                                                                                                                             | Length (1) Metre (m)                                                                                                   |                                               | Metre (m)        |  |
| Magnetic field                   | The region around a magnet where a force acts on another magnet or magnetic material. The field is strongest at the poles of the magnet.                                                                | Potential difference (V) Volt (V)                                                                                      |                                               |                  |  |
| Magnetic field lines             | The direction of a magnetic field line is from the north pole of a magnet to the south pole of the magnet.                                                                                              | Number of turns (N) -                                                                                                  |                                               |                  |  |
| Compass                          | This contains a small bar magnet and the magnet aligns itself with the surrounding magnetic field.                                                                                                      | Current (I) Ampere (A                                                                                                  |                                               | Ampere (A)       |  |
| Earth's magnetic<br>field        | The Earth has a magnetic field. The compass needle points in the direction of the Earth's magnetic field.                                                                                               | 3. Equations                                                                                                           |                                               |                  |  |
| Magnetic field of a<br>conductor | When a current flows through a conducting wire a magnetic field is produced around the wire. The strength of the magnetic field depends on the current through the wire and the distance from the wire. | HT: - Force on a<br>conductor                                                                                          | F = BI <i>l</i>                               |                  |  |
| Motor effect                     | When a conductor carrying a current is placed in a magnetic field the magnet producing the field and the conductor exert a force on each other.                                                         | Transformers                                                                                                           | $\frac{V_p}{V_s} = \frac{N_p}{N_s}$           |                  |  |
|                                  |                                                                                                                                                                                                         |                                                                                                                        | $V_s I_s = V_p I_p$                           |                  |  |
| Solenoid                         | A coil of wire which carries an electric current.                                                                                                                                                       | 4. Electric Motors                                                                                                     |                                               |                  |  |
| Soft iron core                   | A solenoid is wrapped around this to increase the strength of its magnetic field. The core is an induced magnet.                                                                                        |                                                                                                                        | Increasing current                            |                  |  |
| Electromagnet                    | A solenoid wrapped around an iron core, whose magnetism can be turned on an off by an electric current.                                                                                                 | Increase speed<br>by                                                                                                   | Increasing the n <sup>o</sup> of <b>turns</b> |                  |  |
| Magnetic flux<br>density         | A measure of how many field (flux) lines there are in a region – it shows the strength of the magnetic field.                                                                                           |                                                                                                                        | Increasing the field<br>strength              |                  |  |
| Electric motor                   | A coil of wire placed between the poles of a magnet and able to spin.                                                                                                                                   | Reverse                                                                                                                | Reversing direction of<br>current             |                  |  |
| Commutator                       | A split ring which allows current to flow through the coil of an electric motor as it spins.                                                                                                            | direction                                                                                                              | Swapping magnetic poles                       |                  |  |
| Generator                        | Can produce a alternating or direct current.                                                                                                                                                            | 5.                                                                                                                     | Electror                                      | nagnets          |  |
| Dynamo                           | Generate direct current.                                                                                                                                                                                | Adding more turns<br>the coil.<br>Insert an iron coil in<br>the centre of the co<br>strength by<br>Increase the voltag |                                               | -                |  |
| Alternating current              | Current where the direction is constantly changing direction.                                                                                                                                           |                                                                                                                        |                                               |                  |  |
| Alternators                      | Generate Alternating current.                                                                                                                                                                           |                                                                                                                        |                                               |                  |  |
| Direct current                   | Current is a flow of charge, and conventional current (direct current, d.c.) flows from positive to negative.<br>Flows from $+ \rightarrow -$                                                           |                                                                                                                        |                                               | ase the voltage. |  |
| Oscilloscope                     | Used to see the generated potential difference and how it changes over time.                                                                                                                            |                                                                                                                        |                                               | -                |  |
| transformers                     | Change the potential difference only in alternating current. Can increase or decrease the potential difference.                                                                                         |                                                                                                                        |                                               |                  |  |









| 9. Transformers : - Higher Tier |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |  |  |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|
| What is a transformer?          | <ul> <li>Alter the potential difference but only for alternating current.</li> <li>A transformer consists of a soft iron coil with two coils wound around it which are not connected to one another.</li> <li>There are 2 types of transformer: <ul> <li>step up – more coils on secondary - increase the P.D.</li> <li>step down – fewer coils on secondary - decrease the P.D.</li> </ul> </li> </ul>                    | Step-up<br>transformer<br>Primary<br>coil<br>110/120<br>volts<br>Secondary<br>coil<br>220/240<br>volts   |  |  |  |
| Formula                         | 1)<br>$\frac{Voltage in Secondary Coil}{Voltage in Primary Coil} = \frac{Turns on Secondary Coil}{Turns on Primary Coil}$ OR<br>$\frac{V_{s}}{V_{p}} = \frac{N_{s}}{N_{p}}$ 2) Transformers are almost 100% efficient. Therefore Power in primary coil = Power in secondary coil<br>OR<br>Primary coil p.d. x primary coil current = Secondary coil p.d. x secondary coil current<br>$V_{p} \ge V_{p} \ge V_{s} \ge I_{p}$ | Step-down<br>transformer<br>Primary<br>coil<br>220/240<br>volts<br>Secondary<br>coil<br>110/120<br>volts |  |  |  |