

Improve your maths Find mew skills Explare creative ideas DsVolop problem nolving work as a team Learn to communicate

How is the course structured and graded?

Example project In progress 2021

1. Design Brief and Task analysis

I intend to design a learning aid for a child aged 3-6 years old. It will have an emphasis on craftsmanship and sustainable design. The function is to encourage learning through play and develop hand to eye coordination. It will be a one-off manufacture but designed to be recreated for batch/mass production.

2. Initial research

This initial research is amide at find out price and materials. I intend to use several ideas but combining them in to something that is more mobile that could help with learning to walk. I appreciate the simplicity in the designs and the use of mainly primary colours. Most of the manufacturing should be straight forward in terms of both one-off and batch production.

Manhattan SKWISH
£14
Wood and bungy material

Mr Flynn 1977

Chad Valley wooden tool box £8
Beech wood

MURO Modular CUBE Massive Pack
£250

Hape E1801 learning toy, Skill Game £12
Pine and polymer tube

Brico Building set

2b. The work of others - The Memphis group

Funky, colourful, challenging, weird, different, sculptural, fun! There are many ways to describe the Memphis group but my reason is because how it fits in with children and play! Because of the bright colour and simply geometry, Memphis is perfect as a group to influence the building of a child's toy. This page will give my client an idea of what I intend to build.

Mr Flynn 1977

3. Anthropometric data

Anthropometric data. I visited a local primary school, and with permission from some parents that I know and the permission of the staff I have measured several body parts of an age range that I am aiming the design at - the middle school pupil year six to fifteen. Some measurements are more critical than others at this moment - length of forearm and distance from chair to desk.

My first step was to roughly sketch out the design to show my client. They were impressed with the design and thought that is was suitable due to how easy and safe it was to use.

Mr Flynn 1977

This is my first idea based on Martine Bedin's 1908's "Super lamp" design. I have used the basic shape to create a simple, fun shape toy. My next step is to model it to see how it functions. I will probably use soft materials like
 foam and card just to get an idea of form, structure and weight.

The shapes will be colour coded to make the learning tasks easier.

This slot will make it easy to extract

I developed the sketch using 2D Design for a better level of better presentation.

5. Sketch model

This is my first attempt at physically modelling my design from page 6. The material used is 3 mm corrugated card, cut using a laser cutter. The process for designing and manufacturing was quick - all done in around 30-40 minutes. The pattern was drawn up using 2D Design at around 1:4 scale.

Issues: The card is hard to judge in terms of tolerances and it was difficult to fit together. The laser also creates a lot of soot as it burns through the material, which gets all over your hands and the surface of the card - it is not an attractive presentation piece. This is not effective enough at the moment to show my client so I will try another process

6. Design development

These are my second round of ideas based on my original sketch. Martine Bedin's 1908's "Super lamp" is still the inspiration but I have change the shape so it may be easier to manufacture.

Below are my developed ideas using basic geometric shapes and bold colours. I have kept with the style of Memphis as it is so suitable for children. The ideas have been drawn up using 2D Design and I will now model 2 or 3 using high density foam.

7. Exploded view

This view shows how all the components will be manufactured for the second prototype. I intend to use 6 mm MDF as it is a reliable yet inexpensive. It is easy to cut and shape and can be recycled easily.

A: Side (left)
B: Side (Right)
C: Lid
D: Base
E: Fooł
F: Pin

Mr Flynn 1977

8. Component cutting list

At this stage it is time to consult with my client about materials. It is my role as designer to explain and recommend the differences in suitable materials in terms of their properties via cost. We discussed what type of durability tests might be appropriate as well as how to design in repairable features if necessary. I have also included a few visuals from the catalogues to help my client get a further idea of what was what.

Acrylic rod/sheet:

 PRO- Colourful, easy to clean. CON- Expensive, brittle.

Pine
PRO- Very strong and flexible
CON- Poor wood grain - soft surface

Metal hinge
PRO- Allows doors to open CON- Very expensive.

Corrugated card

PRO- Rigid, cheap, recyclable CON- Not durable

PRO- Very strong and

PRO- Easy to shape - good for fast modelliıy. CON- Very soft / weak, environmentally poor.

Dowel

PRO- Available in various dimensi CON- Very expensive

Jelutong

Light-weight

HDF / Styrofoam
PRO- Easy to shape - good for fast modelling. CON- Very soft / weak, environmentally poor.

High Impact polystyrene PRO- easy to mould, rigid CON- not strong

small dimensions

Acrylic paint PRO- child safe. CON- Hard to apply evenly

Danish oil

PRO- Surface protecto CON- Expensive

9. 3D Development

Front view

Side view

The paper was applied to 6 mm MDF using a glue stick. This is a perfect modelling material as it has enough rigidity to be cut into complex shapes and be glued and tested. The shapes were drilled so that a fret saw blade could be inserted and cut from the inside. The edges were quickly smoothed using 240 grit glass paper. The manufacturing time was 30 minutes.

Example projects Past Masters

Example 2: Bent plywood chair

Mr Flynn 1977

